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Abstract. Romulus consists of four modes, Romulus-N, Romulus-M, Romulus-T, and Romulus-H. Among
them, Romulus-T is an AEAD mode designed for leakage-resilience, and it takes a variant of TEDT that
slightly differs from the original proposal of Berti et al. (CHES 2020). We provide a formal support for its
claimed single-user security of (n− logn) bits.

1 Introduction

Romulus is a submission to the NIST Lightweight Cryptography competition, and it consists of four modes,
Romulus-N, Romulus-M, Romulus-T, and Romulus-H. Romulus-N is a nonce-based AE (NAE) mode, Romulus-M
is a nonce misuse-resistant AE (MRAE) mode, Romulus-T is a leakage-resilient AE mode, and Romulus-H is
a hash function. All these modes use a tweakable block cipher Skinny-128-384+, which basically consists of
Skinny-128-384 [3] reduced to 40 rounds.

Romulus-T follows TEDT of Berti et al. [4], with slight differences in the nonce length, the maximum message
length, and the definition of the hash function. For the hash function, Romulus-T adopts Romulus-H, which is
the MDPH hashing mode [18] that combines a compression function by Hirose [12] with a domain extension
scheme by Hirose et al. [13].

We provide a formal support for its claimed single-user security of (n − log n) bits [11], where n = 128.
Concretely, we show the following results:

– First, in Theorem 1, we prove the (n−log n)-bit CIML2 security in the “unbounded leakage” setting [5, 6] and
in the ideal cipher model. The notion stands for ciphertext integrity with misuse-resistance and (encryption
and decryption) leakage, and it captures a strong integrity adversary that observes leakages of the encryption
and decryption oracles, and that can repeat nonces.

– Next, in Theorem 2, we prove the (n− log n)-bit CCAm$ security in the ideal cipher model without leakages,
and in the nonce-misuse resilience setting. The notion stands for chosen-ciphertext security with misuse-
resilience, and it captures a strong confidentiality adversary that has the encryption and decryption oracles,
and that can repeat nonces. We note that as we are dealing with misuse-resilience [2], we focus on the case
where the nonces used for encrypting confidential messages are not reused.

– Finally, in Theorem 3, we prove n/2-bit CCAmL2 security in the ideal cipher model. The notion stands
for chosen-ciphertext security with misuse-resilience and leakage, and it captures a strong confidentiality
adversary that observes the leakages of the encryption and decryption oracles, and that can repeat nonces.

2 Preliminaries

Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For X ∈ {0, 1}∗, let |X| denote
its bit length. Here |ε| = 0. For integer n ≥ 0, let {0, 1}n be the set of n-bit strings, and let {0, 1}Lencn =⋃

i∈{0,...,n}{0, 1}i, where {0, 1}0 = {ε}. If X is uniformly distributed over a set X , we write X
$← X . For two

bit strings X and Y , X ∥Y is their concatenation. We also write this as XY if it is clear from the context. Let
0i (1i) be the string of i zero bits (i one bits), and for instance we write 10i for 1 ∥ 0i. We write msbi(X) (resp.
lsbi(X)) to denote the i most (resp. least) significant bits of X. For X ∈ {0, 1}∗, let |X|n = max{1, ⌈|X|/n⌉}.
Let (X[1], . . . , X[x])

n←− X be the parsing of X into n-bit blocks . Here X[1] ∥X[2] ∥ . . . ∥X[x] = X and

x = |X|n. When X = ε, we have X[1]
n←− X and X[1] = ε. Let X ≪ i denote the left rotation shift of X by i

bits.



Padding. Romulus-T and the underlying hash function Romulus-H use an injective padding that is defined on
the whole byte strings. In detail, for any X ∈ {0, 1}∗ of length multiple of 8 (i.e., byte string), let

ipadl(X) =

{
ε, if X = ε,

X ∥ 0l−(|X| mod l)−8 ∥ c, if X ̸= ε and |X| mod l = 0,
,

where c = len8(Z) for some Z of (|X| mod l) bits. Here, Z is interpreted as the empty string when |X| mod l = 0,
and otherwise the last partial block obtained by parsing X into l-bit blocks. We remark that X is a byte string.
When |X| mod l = 0, ipadl appends 0

l toX. As a special case, whenX = ε, ipadl(X) = 0l. When |X| mod l ̸= 0
the padding is interpreted as applying ipadl to the last (partial) block. The injectivity is easily confirmed. We
use l = 128 for Romulus-T and l = 256 for Romulus-H. The byte length encoding uses the last byte.

(Tweakable) Block Cipher. A tweakable block cipher (TBC) is a keyed function Ẽ : K × TW ×M → M,
where K is the key space, TW is the tweak space, and M = {0, 1}n is the message space, such that for any

(K,Tw) ∈ K×TW , Ẽ(K,Tw, ·), or ẼTw

K (·) for short, is a permutation overM. The decryption routine is written as

(ẼTw

K )−1(·), where if C = ẼTw

K (M) holds for some (K,Tw,M) we have M = (ẼTw

K )−1(C). When TW is singleton,
it is essentially a block cipher.

A tweakable URP (TURP) with a tweak space T W and a message space X , P̃ : T W ×X → X , is a random
tweakable permutation with uniform distribution over Perm(T W,X ). The decryption is written as P−1(∗) for
URP and (P̃

−1
)Tw(∗) for TURP given tweak Tw. An ideal TBC Ẽ : K × TW ×M → M is a TBC sampled

uniformly at random from all TBCs with key space K, tweak space TW and plaintext space M. In this case,
ẼTw

K is a random permutation ofM for each (K,Tw) ∈ K × TW even if the key K is public.

Definition 1. A nonce-based authenticated encryption (NAE) is a tuple Π = (E ,D). For key space K, nonce
space N , message space M and associated data (AD) space A, the encryption algorithm E takes a key K ∈ K
and a tuple (N,A,M) of a nonce N ∈ N , an AD A ∈ A, and a plaintext M ∈ M as input, and returns a
ciphertext C ∈ M and a tag T ∈ T . Typically, T = {0, 1}τ for a fixed, small τ . The decryption algorithm D
takes K ∈ K and the tuple (N,A,C, T ) as input, and returns M ∈M or the reject symbol ⊥. The corresponding
encryption and decryption oracles are written as EK and DK .

An NAE scheme usually assumes each nonce in encryption queries to be distinct. However, our security
definitions consider the case that nonces may be reused (misused) in encryption queries.

Security Definitions: Black-box. For non-leaking security, we follow the nonce-misuse resilience model of
Ashur et al. [2, 4]. In detail, Ashur et al.’s idea is to divide adversarial encryption queries into nonce-respecting
challenge and nonce-reusing non-challenge ones, and only require (confidentiality and integrity) security among
challenge queries. For the concrete formalism, we follow the extension CCAm$ notion of Berti et al. [4].

Definition 2 (CCAm$ Advantage). Given a nonce-based authenticated encryption AEAD = (E ,D), the chosen
ciphertext misuse resilience advantage of an adversary A against AEAD is

AdvCCAm$
AEAD (A) :=

∣∣∣Pr
[
AEK ,EK ,DK ,Ẽ,Ẽ−1 ⇒ 1

]
− Pr

[
AEK ,$,⊥,Ẽ,Ẽ−1 ⇒ 1

]∣∣∣,

where the probability is taken over the key K ← K, over A’s random tape and the ideal TBC Ẽ and where:

– EK(N,A,M): outputs EK(N,A,M);

– $(N,A,M) outputs and associates a fresh random pair (C, T )
$← C|M |×T to fresh input, and the associated

C otherwise;

– DK(N,A,C, T ) outputs DK(N,A,C, T ) if (N,A,C, T ) is not an oracle answer to an encryption query
(N,A,M) for some M , and ⊥ otherwise;

– ⊥(N,A,C, T ) outputs ⊥;
– (i) nonce N cannot be used both in query to O1(N, ∗, ∗) and O2(N, ∗, ∗); (ii) O2(∗, ∗, ∗) is nonce-respecting;

(iii) if (C, T ) is returned by O1(N,A,M) or O2(N,A,M) query, O3(N,A,C, T ) is forbidden.

Security Definitions: Leakage. For leakage security, we follow Berti et al.’s [4] ciphertext integrity with
misuse-resistance and (encryption & decryption) leakage (CIML2) and chosen-ciphertext security with misuse-
resilience and leakage (CCAmL2). We adopt the single-user version of the muCIML2 definition of Berti et al. [4].
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Definition 3 (CIML2 Advantage). Given a nonce-based authenticated encryption AEAD = (E ,D) with leak-
age function pair L = (Lenc, Ldec), the ciphertext integrity advantage with misuse-resistance and leakage of an
adversary A against AEAD is

AdvCIML2
AEAD,L(A) :=

∣∣∣Pr
[
ALEK ,LDK ,Ẽ,Ẽ−1 ⇒ 1

]
− Pr

[
ALEK ,LD⊥

K ,Ẽ,Ẽ−1 ⇒ 1
]∣∣∣ ,

where the probability is taken over the key K ← K, over A’s random tape and the ideal TBC Ẽ, and where:

– LEK(N,A,M): outputs the ciphertext EK(N,A,M) and the corresponding leakage Lenc(K,N,A,M);
– LDK(N,A,C, T ): outputs

(
DK(N,A,C, T ), Ldec(K,N,A,C, T )

)
;

– LD⊥
K(∗, ∗, ∗, ∗): computes leakd ← Ldec(K,N,A,C, T ) and if C is an output of some leaking encryption query

(N,A,M) for some M outputs (M, leakd), else outputs (⊥, leakd).
– A is forbidden to make trivial decryption queries, i.e., query DK(N,A,C) such that the action EK(N,A,M)→

C happens before.

We adopt the single-user version of the muCCAmL2 definition of Berti et al. [4].

Definition 4 (CCAmL2 Advantage). Given an authenticated encryption AEAD = (E ,D) with leakage function
pair L = (Lenc, Ldec), the chosen-ciphertext advantage with misuse-resilience and leakage of an adversary A
against AEAD is

AdvCCAmL2
AEAD,L (A) :=

∣∣∣Pr
[
PrivKCCAmL2,0

A,AEAD,L ⇒ 1
]
− Pr

[
PrivKCCAmL2,1

A,AEAD,L ⇒ 1
]∣∣∣ ,

where the security game PrivKCCAmL2,b
A,AEAD,L is defined in Figure 1.

PrivKCCAmL2,b
A,AEAD,L,u is the output of the following experiment:

Initialization: generates K ← K and sets Ech, E ← ∅.
Leaking encryption queries: AL gets adaptive access to LE(·, ·, ·),
LE(N,A,M) outputs ⊥ if (N, ∗, ∗) ∈ Ech, else computes C ← EK(N,A,M) and leake ← Lenc(K,N,A,M), updates
E ← E ∪ {N} and finally returns (C, leake).

Leaking decryption queries: AL gets adaptive access to LD(·, ·, ·),
LD(N,A,C) outputs ⊥ if (N,A,C) ∈ Ech, else computes M ← DK(N,A,C) and leakd ← Ldec(K,N,A,C) and
returns (M, leakd);

Challenge queries: on possibly many occasions AL submits (Nch, Ach,M
0,M1),

If M0 and M1 have different (block) length or Nch ∈ E or (Nch, ∗, ∗) ∈ Ech, returns ⊥; Else computes Cb ←
EK(Nch, Ach,M

b) and leakbe ← Lenc(K,Nch, Ach,M
b), updates Ech ← Ech ∪ {(Nch, Ach, C

b)} and finally returns
(Cb, leakbe);

Decryption challenge leakage queries: AL gets adaptive access to Ldecch(·, ·, ·),
Ldecch(Nch, Ach, C

b) computes and outputs leakbd ← Ldec(k,Nch, Ach, C
b) if (Nch, Ach, C

b) ∈ Ech; Else it outputs ⊥;
Finalization: AL outputs a guess bit b′ which is defined as the output of the game.

Fig. 1: The PrivKCCAmL2,b
A,AEAD,L game.

Balls-in-bin Lemma. We’ll rely on a balls-in-bin lemma from [20, Appendix A] presented as follows.

Lemma 1 (Balls-in-Bin). Consider throwing a ball into a bin that is chosen independently uniformly at
random from 2n ≥ 8 bins. Then the probability that, after throwing σ balls with 8 ≤ σ ≤ 2n, any bin contains
2 log2 σ balls or more, is less than 1

2n .

3 Specifications for Romulus-T

The specification of Romulus-T is depicted in Figures 2 and 3. Several optimizations have been performed over
the original TEDT specification in order to make implementations more efficient and more streamlined with
other Romulus members. The first modification is using Romulus-H, this helps implementations in two aspects:

(1) It absorbs 2 blocks of messages for every 2 calls to the TBC, making the performance faster than comparable
hash functions.

(2) Since the Hir compression function shares the same tweakey input between the two calls, the compression
function can be easily parallized in both software and hardware.
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Similar parallilizability arguments apply to the key-stream generation (the inner for loop of Figure 2), where
both calls to the TBC can be parallilized, with only one different byte in their respective tweakeys. The counters
used in the key-stream generation are the same counters used in Romulus-N, and the padding used in the hash
function is a combination between the lightweight padding used in Romulus-H and padding the counter value
used during key-stream generation.

Besides, since these two parts of the scheme can be implemented without masking, their performance can
be very competitive compared to schemes that require uniform masking. Unprotected Skinny hardware and
software implementations have been shown to be quite competitive in terms of their performance and energy
consumption [17, 15, 7, 3, 1].

When it comes to the protected TBC calls; the key derivation function and the tag generation/verification
function, they are built using protected TBC implementations. Protected Skinny implementations have been
shown to have significant advantage over other types of primitives, as the tweakey (the majority of its state) can
be either unprotected or cheaply protected, and some parts of it (almost half the state) is public and does not
need any direct protection. This is shown in research work on masked TBC-based modes [19] or benchmarks
on Romulus-N [22, 14]. While masked implementations TBCs suffer from a slow-down due to their latency, the
protected TBC is only called twice, amortizing any performance penalty, a feature shared only by a handful of
candidates; ISAP and some Ascon implementations. We also refer the reader to the excellent study by Verhamme
et al. on ISAP, Ascon and Romulus-T [23].
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Algorithm Romulus-T.E [Ẽ]K(N,A,M)

1 if M = ϵ then C ← ϵ
2 else
3 (M [1], . . . ,M [m])

n←−M

4 S ← Ẽ
(0n,66,0n−8)
K (N)

5 for i = 1 to m− 1
6 C[i]←M [i]⊕ Ẽ

(0n,64,π(i−1))
S (N)

7 S ← Ẽ
(0n,65,π(i−1))
S (N)

8 end for
9 z ← Ẽ

(0n,64,π(m−1))
S (N)

10 C[m]←M [m]⊕ lsb|M [m]|(z)
11 C ← C[1] ∥ . . . ∥C[m]
12 U ← ipad∗(A)∥ipad∗(C)∥N∥π(|C|n)
13 H ← Romulus-H[Ẽ](U)
14 (L,R)

n←− H

15 T ← Ẽ
(R,68,0n−8)
K (L)

16 return (C, T )

Algorithm Romulus-T.D[Ẽ]K(N,A,C, T )

1 U ← ipad∗(A)∥ipad∗(C)∥N∥π(|C|n)
2 H ← Romulus-H[Ẽ](U)
3 (L,R)

n←− H

4 L′ ←
(
Ẽ
(R,68,0n−8)
K

)−1
(T )

5 if L ̸= L′ then return ⊥
6 else if M = ϵ then return ϵ
7 else
8 (C[1], . . . , C[m])

n←− C

9 S ← Ẽ
(0n,66,0n−8)
K (N)

10 for i = 1 to m− 1
11 M [i]← C[i]⊕ Ẽ

(0n,64,π(i−1))
S (N)

12 S ← Ẽ
(0n,65,π(i−1))
S (N)

13 end for
14 z ← Ẽ

(0n,64,π(m−1))
S (N)

15 M [m]← C[m]⊕ lsb|C[m]|(z)
16 M ←M [1] ∥ . . . ∥M [m]
17 return M

Algorithm Romulus-H[Ẽ](M)

1 L← 0n, R← 0n

2 (M [1], . . . ,M [m])
2n←− ipad2n(M)

3 for i = 1 to m− 1
4 (L,R)← Hir[Ẽ](L,R,M [i])

5 Y ← Hir[Ẽ](φ(L,R),M [m])
6 return Y

Algorithm Hir[Ẽ](L,R,M)

1 L′ ← ẼM
R (L)⊕ L

2 R′ ← ẼM
R (L⊕ 1)⊕ L⊕ 1

3 return (L′, R′)

Algorithm φ(L,R)

1 L′ ← L⊕ 2
2 return (L′, R)

Fig. 2: The Romulus-T leakage-resilient AEAD modes. π : {0, ..., 256−2} → {0, 1}n−8 is a bijective mapping, and
please refer to the specification document [11] for the concrete instantiation of π. The red underlined statements
are recommended for side-channel secure implementations.
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Ẽ66,0N

K
0n

Ẽ64,0

Ẽ65,0

M [1]

C[1]

N

N

0n

0n

Ẽ64,1

Ẽ65,1

M [2]

C[2]

N

N

0n

0n

Ẽ64,m−2

Ẽ65,m−2

M [m− 1]

C[m− 1]

N

N

0n

0n

Ẽ64,m−1

M [m]

C[m]

N

0n

ipad∗n(A) ipad∗n(C) mN

Romulus-H Ẽ68,0 T

K

split

Fig. 3: The Romulus-T leakage-resilient AE mode. The red-circled TBC calls are the Key-Derivation Function (KDF) and Tag Generation Function (TGF): for side-
channel security they need heavy protection to be “leak-free”, while the other TBC calls can be leaking. Note that the value 0 in the tweak input of the TGF and KDF
is to be understood as 056, not as 0. This shows the encryption when the last message block has full n bits, otherwise we chop the TBC output. See Figure 2.
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4 CIML2 Security

In this section we establish the leakage resilient integrity of Romulus-T. We prove the CIML2 security in the
“unbounded leakage” setting [5, 6] and in the ideal cipher model.1 Formally, we assume that all the intermediate

values completely leak except the master key (i.e., K of Ẽ
(0n,66,0n−8)
K and Ẽ

(R,68,0n−8)
K ) remains secret. This means

that every internal call to the TBC ẼTw

K (X) → Y or (ẼTw

K )−1(Y ) → X completely leaks {K,Tw, X, Y }, and
every internal action C ← Y ⊕M completely leaks {Y,M,C}. We denote this family of leakage functions by L∗.

Since we analyze Romulus-T in the ideal TBC model, we can prove information theoretic security and
adversarial power is solely characterized by the number of queries. To simplify notations, we define

AdvCIML2
Romulus-T,L∗(qe, qd, σm, σa, qẼ) := max

{
AdvmuCIML2

A,TEDT,L∗,u

}
,

where the maximum is taken over all CIML2 adversaries making qe leaking encryption queries, qd leaking
decryption queries, qẼ ideal TBC queries and has σa n-bit blocks in the queried associated data and σm n-bit
blocks in the queried messages (including the incomplete last blocks).

Then, our main result is as follows. This claim implies the claimed n− log2 n-bit integrity security [11, Sect.
4.4]. In addition, the security is kept against full nonce misuse and full leakages (except that the AEAD key K
does not leak).

Theorem 1. Assume that n ≥ 3 and leakage L∗ is “unbounded” as above. Then, in the ideal TBC model, when
Q := 3σm + σa + 6(qe + qd) + qẼ ≤ 2n/8 it holds

AdvCIML2
Romulus-T128,L∗(qe, qd, σm, σa, qẼ) ≤

12Q+ 2nqd
2n

+
8Q(qe + qd)

22n
. (1)

The proofs are available in Appendix B.

As long as we carefully protect the aforementioned master key (K in Ẽ
(0n,66,0n−8)
K and Ẽ

(R,68,0n−8)
K ), the bounds

are asymptotically optimal O
(

σa+σm+qẼ+nqd
2n

)
. Concretely, when n = 128, integrity is up to σ ≫ 2120 blocks,

qẼ ≫ 2120 offline computations (derived from the condition 3σm + σa + 6(qe + qd) + qẼ ≤ 2n/8) and qd ≈ 2120

(due to the term 2nqd/2
n) decryption queries.

5 Black-box Security

In this section we prove CCAm$ security for Romulus-T in the ideal cipher model, without leakages. To simplify
the notations, we define

AdvCCAm$
Romulus-T(qe, qm, qd, σm, σa, qẼ) := max

{
AdvCCAm$

TEDT,A,u

}
,

where the maximum is taken over all CCAm$ adversaries making qe challenge encryption queries, qm non-
challenge encryption queries, qd decryption queries, qẼ ideal TBC queries and has σa n-bit blocks in all queried
associated data and σm n-bit blocks in all queried messages (including the incomplete last blocks). The following
claim implies the claimed n− log2 n-bit privacy security [11, Sect. 4.4]. In addition, the security is kept in the
nonce-misuse resilience setting (but no leakage here).

Theorem 2. When n ≥ 3, in the ideal TBC model, when Q := 3σm+σa+6(qe+ qd+ qm)+ qẼ ≤ 2n/8 it holds

AdvCCAm$∗

Romulus-T(qe, qm, qd, σm, σa, qẼ) ≤
(4n+ 16)Q+ nqe + 2nqd

2n
+

8Q(qe + qd)

22n
. (2)

The proof is available in Appendix C.

The bounds are almost the same as Theorem 1. When n = 128, CCA misuse-resilience is up to σa + σm ≈ 2120

blocks, qẼ ≈ 2120 offline computations and qd ≈ 2120 decryption queries. While it seems that the bounds are
not affected by the qm non-challenge queries, these queries actually affect σ which, in turn, affects the bound.

6 CCAmL2 Security

We now detail the leakage-resistant CCA security of Romulus-T. The leakage model, assumptions and proof
approaches all follow [4, Sect. 6], and changes are mostly notational. Though, to be conservative, we present
the details in this section.

1 This is inevitable, since we are using Ẽ for (keyless) hashing.
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6.1 Modeling Leakage Functions

We model the leakage as probabilistic efficient functions manipulating and/or computing (partially) secret values.

In Romulus-T, each computation of Ẽ (resp. ⊕) comes with some additional (internal) information given by LẼ
(resp. L⊕). We split the leakage trace resulting from the leaking execution of the TBC Ẽ between its input and

output parts: if ẼTw

K (X)→ Y , LẼ(K,Tw, X, Y ) := (Lin
Ẽ
(K,Tw;X), Lout

Ẽ
(K,Tw;Y )) with semicolon.

Since the leakage functions Lin
Ẽ
, Lout

Ẽ
, and L⊕ are probabilistic (which is indeed likely in practice), measuring

p times the leakage from the same computation would not result in completely identical traces. Therefore, we
write [L⊕]p for the vector of p leakages of ⊕ (and use similar notations for the other operations). Because of the

plentiful possible uses of Ẽ, we will next denote its input-output leakage function pair as (Lin,Lout) for simplicity.
To prevent “future computation attacks” [10] in the ideal cipher model, we assume oracle-free leakage

functions [24]: they cannot make any call to Ẽ, since it is natural for an implementation not to evaluate
computations that are unrelated to its current state. Therefore, we will say that the leakage function associated
to Ẽ is oracle-free, if Q(Lin

Ẽ
) = Q(Lout

Ẽ
) = ∅, where Q(L∗

Ẽ
) is the transcript of queries and answers made by L∗

Ẽ

to Ẽ when L∗
Ẽ
is evaluated on its inputs.

To achieve confidentiality, the leakages have to be somewhat “bounded”. To this end, we essential use the
same leakage assumptions as [4, Sect. 6], i.e., the probability that an adversary recovers an ephemeral key before
it is being refreshed should be small, and the leakages due to XORs are also somewhat bounded. Formally, define

Adv2-up[q](A) := PrẼ,s1

[
s2 ← ẼTw

s1 (PA), z ← ẼTw
s1 (PB),G ← AẼ(s2, z, leak) : s1 ∈ G

]
,

where |G| = q, and A’s input leak is a list of leakages depending on values Tw, PA, PB , s0 specified by A:

leak =
[
Lout(s0, Tw; s1), L

in(s1, Tw;PA), L
out(s1, Tw; s2), L

in(s1, Tw;PB), L
out(s1, Tw; z)

]p
. (3)

We further define

Adv2-up[q](p, qẼ, t) := max
{
Adv2-up[q](A)

}
, (4)

where the maximum is taken over all adversaries that repeat their measurements p times, makes qẼ Ẽ-queries,
and runs in time t.

Regarding leakages resulting from XORing the random (looking) block stream with the message blocks in
Romulus-T, we define

AdvLORL2(A) :=

∣∣∣∣PrẼ,z
[
c0 ← z ⊕m0 : AẼ(c0, leak0)⇒ 1

]
− PrẼ,z

[
c1 ← z ⊕m1 : AẼ(c1, leak1)⇒ 1

]∣∣∣∣ , (5)

where leakb again depends on values Tw, s specified by A:

leakb =
(
[Lout(s, Tw; z)]

p, L⊕(z,m
b), [L⊕(z, c

b)]p−1
)
. (6)

We also define

AdvLORL2(p, qẼ, t) := max
A

{
AdvLORL2

T (A)
}
. (7)

6.2 CCAmL2 Analysis of Romulus-T

We define the leakage function L = (Lenc, Ldec) of Romulus-T as:

– Lenc, the leakages generated during the encryption:
• Lin(K,Tw;X) & Lout(K,Tw;Y ) generated by internal calls to Ẽ(K,Tw;X) → Y (excluding KDF-calls

Ẽ
(0n,66,0n−8)
K and TGF-calls Ẽ

(R,68,0n−8)
K , which are again modeled as leak-free),

• L⊕(a, b) generated by the internal actions a⊕ b,
• all the intermediate values involved in the computations of the hash functions (i.e., hash functions are
non-protected, and leak everything).

– Ldec, the above that are generated during the decryption.

Define

AdvCCAmL2
Romulus-T,L(qe, qm, qd, p− 1, qẼ, σa, σm, t) := max

{
AdvCCAmL2

Romulus-T,L(A)
}
,

where the maximum is taken over all CCAmL2 adversaries making qe challenge encryption queries, qm non-
challenge encryption queries, qd decryption queries, p− 1 challenge decryption leakage queries to Ldecch, qẼ ideal
TBC queries and has σa n-bit blocks in all queried associated data and σm n-bit blocks in all queried messages
(including the incomplete last blocks). The following theorem supports the n/2-bit leakage confidentially claim
in [11, Sect. 4.4.1] (see the Interpretation below).
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Theorem 3. Assume that n ≥ 3 and the Romulus-T implementation has leakage functions L = (Lenc, Ldec)
defined above, where Lin, Lout, L⊕ satisfy the assumptions specified by Eq. (3) and Eq. (5). Then, in the ideal
TBC model, when Q := 3σm + σa + 6(qe + qd + qm) + qẼ ≤ 2n/8 it holds

AdvCCAmL2
Romulus-T,L(qe, qm, qd, p− 1, qẼ, σa, σm, t) ≤ 25Q+ 4nqd

2n
+

16Q(qd + qe + qm)

22n

+ σm ·AdvLORL2(p, q∗, t∗) + 2σm ·Adv2-up[q∗](p, q∗, t∗). (8)

where Adv2-up[q∗] and AdvLORL2 are defined in Eq. (4) and Eq. (7) respectively, q∗ = 2qẼ+4σ+6(qe+qd+qm),
t∗ = O(t+ pσtl), and tl is the total time to evaluate Lin and Lout.

Interpretation. The term σm · AdvLORL2(p, q∗, t∗) corresponds to the reduction to the “minimal” message

manipulation. On the other hand, the term 2σm ·Adv2-up[q∗](p, q∗, t∗) captures the hardness of side-channel key
recovery, and it is roughly of some birthday type, namely

O

(
σm ·

qẼ + σm + t

c · 2n
)

= O

(
(qẼ + σm + t)σm

c · 2n
)
,

for some parameter c that depends on the concrete conditions. Yet, it is typically assumed that with such a
small data complexity (only 3 relevant leakage traces), the value of c should be very small [16, 21].
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A Proof Preparations

A.1 Injectivity of Padding

We first show the injectivity of the RTpad scheme.

Lemma 2. For RTpad(A,N,C) = ipad2n
(
ipad∗n(A)∥ipad∗n(C)∥N∥π(|C|8)

)
, it holds RTpad(A,N,C) ̸= RTpad(A′, N ′, C ′)

for any two distinct triples (A,N,C) and (A′, N ′, C ′).

Proof. For simplicity, let V := ipad∗n(A)∥ipad∗n(C)∥N∥π(|C|8) and V ′ := ipad∗n(A
′)∥ipad∗n(C ′)∥N ′∥π(|C ′|8).

For clearness, we first show the injectivity of ipad2n, i.e., ipad2n(V ) ̸= ipad2n(V
′) as long as V ̸= V ′. We

distinguish two cases:

– Case 1: |V |8 ̸= |V ′|8. It further consists of two subcases:
• Subcase 1.1: |V |8 ̸= |V ′|8 mod 2n. Then ipad2n

(
V
)
̸= ipad2n

(
V ′) since the padded fields are distinct;

• Subcase 1.2: |V |8 = |V ′|8 mod 2n. Then it has to be |V |8 = |V ′|8+2ℓn for some integer ℓ, and ipad2n
(
V
)

and ipad2n
(
V ′) have different number of blocks.

– Case 2: |V |8 = |V ′|8, though V ̸= V ′. Then ipad2n
(
V
)
and ipad2n

(
V ′) have different prefixes.

It remains to prove ipad∗n(A)∥ipad∗n(C)∥N∥π(|C|8) ̸= ipad∗n(A
′)∥ipad∗n(C ′)∥N ′∥π(|C ′|8):

– Case 1: N ̸= N ′. Then ipad∗n(A)∥ipad∗n(C)∥N∥π(|C|8) and ipad∗n(A
′)∥ipad∗n(C ′)∥N ′∥π(|C ′|8) have different

suffixes N∥π(|C|8) and N ′∥π(|C ′|8);
– Case 2: N = N ′, but C ̸= C ′. It further consists of two subcases:
• Subcase 2.1: |C| ≠ |C ′|. Then again, ipad∗n(A)∥ipad∗n(C)∥N∥π(|C|8) and ipad∗n(A

′)∥ipad∗n(C ′)∥N ′∥π(|C ′|8)
have different suffixes N∥π(|C|8) and N ′∥π(|C ′|8);

• Subcase 2.2: |C| = |C ′|. Then it necessarily holds ipad∗n(C) ̸= ipad∗n(C
′), and thus ipad∗n(A)∥ipad∗n(C)∥N∥π(|C|8)

and ipad∗n(A
′)∥ipad∗n(C ′)∥N ′∥π(|C ′|8) have different suffixes ipad∗n(C)∥N∥π(|C|8) and ipad∗n(C

′)∥N ′∥π(|C ′|8).
– Case 3: N = N ′ and C = C ′. Then it must be A ̸= A′. In this case, the suffixes ipad∗n(C)∥N∥π(|C|8) and

ipad∗n(C
′)∥N ′∥π(|C ′|8) are the same, but ipad∗n(A)∥ipad∗n(C)∥N∥π(|C|8) and ipad∗n(A

′)∥ipad∗n(C ′)∥N ′∥π(|C ′|8)
have different prefixes ipad∗n(A) and ipad∗n(A

′).

The above complete the analysis. ⊓⊔

A.2 Number of Underlying TBC Calls

Consider a security game AGame(Romulus-T[Ẽ],Ẽ) for any notion. Assume that (also see Theorems 1, 2 and 3):

– A makes q queries to the (keyed) encryption and decryption oracles instantiated with Romulus-T[Ẽ], and
– The processed ADs A consist of σa blocks of n bits (including the incomplete last blocks), and
– The processed messages M consist of σm blocks of n bits (including the incomplete last blocks).

For each triple (A,C,N), when |ipad∗n(A)|n ≤ |A|n+1, |ipad∗n(C)|n ≤ |C|n+1, and the equalities hold when

A or C does not has incomplete last blocks. In addition, the hash Romulus-H[Ẽ]
(
RTpad(A,N,C)

)
makes at most

|A|n + |C|n + 5 queries to Ẽ:

– When |ipad∗n(A)|n + |ipad∗n(C)|n + |N |n +1 = |A|n + |C|n +4 is even, the padded input RTpad(A,N,C) has
|A|n+|C|n+4

2 blocks of 2n bits;
– When |ipad∗n(A)|n + |ipad∗n(C)|n + |N |n +1 = |A|n + |C|n +4 is odd, the padded input RTpad(A,N,C) has

|A|n+|C|n+5
2 blocks of 2n bits.

Therefore, it holds:
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– The hash and tag generation makes at most
∑ |ipad∗n(A)|n +

∑ |ipad∗n(C)|n +(5+1)q = σa +σm +6q TBC
calls, and

– The encryption pass makes 2m TBC calls (including the initial calls using tweaks (0n, 66, 0n−8)) to process
the σm message blocks.

By these, define the “number of blocks” σ as

σ := 3σm + σa + 6q.

Then, in the security game AGame(Romulus-T[Ẽ]K ,Ẽ), the ideal TBC Ẽ receives at most

Q := σ + qẼ = 3σm + σa + 6q + qẼ. (9)

queries in total. Subsequent analyses will replace q with other notations that depend on the context.

A.3 Properties of Hirose Compression Function

Recall that Hir[Ẽ] is the Hirose compression function based on the ideal TBC Ẽ. Note that any adversary A
against Hir[Ẽ] can be normalized to an adversary A′ that only makes pairs of Hirose “matching” queries: A′

runs A, and
– each time A makes a forward query ẼTw

K (X), A′ makes a query ẼTw

K (X ⊕ θ) → Y ′ right after relaying

ẼTw

K (X)→ Y , and

– each time A makes a backward query (ẼTw

K )−1(Y ), A′ makes a query ẼTw

K (X ⊕ θ)→ Y ′ right after relaying

(ẼTw

K )(Y )→ X.

Therefore, we could concentrate on adversaries that only make such pairs of “matching” queries. In this vein,
the function Hir[Ẽ] is collision resistant [12, Theorem 4].

Lemma 3. For any A making Q (unordered) pairs of matching queries to Ẽ with 1 ≤ Q ≤ 2n/4, it holds

Pr
[(
(L,R,M), (L′, R′,M ′)

)
← AẼ : Hir[Ẽ](L,R,M) = Hir[Ẽ](L′, R′,M ′)

]
≤ 3

( Q

2n−1

)2

≤ 6Q

2n
.

We also need multi-collision resistance bound of Davies-Meyer. A similar result has been proven by Berti et
al. [4, Lemma 2]. However, Berti et al.’s result was only proven for chopped Davies-Meyer.

Lemma 4. For any adversary A making at most 2Q ≤ 2n/2 queries to Ẽ and any integer λ, it holds

Pr
[(
(K1, Tw1, X1), . . . , (Kλ, Twλ, , Xλ)

)
← AẼ : ẼTw1

K1
(X1)⊕X1 = . . . = ẼTwλ

Kλ
(Xλ)⊕Xλ

]
≤ (4Q)λ

λ!2(λ−1)n
.

In particular, when λ = n+ 1, n ≥ 2 and Q ≤ 2n/8, it holds

Pr
[(
(K1, Tw1, X1), . . . , (Kn+1, Twn+1, , Xn+1)

)
← AẼ : ẼTw1

K1
(X1)⊕X1 = . . . = Ẽ

Twn+1

Kn+1
(Xn+1)⊕Xn+1

]
≤ Q

2n
.

Proof. The statement on chopped Davies-Meyer was given in [4, Lemma 2]. For completeness, we present a

complete argument. Consider any λ Ẽ queries ẼTw1

K1
(X1) = Y1, . . . , Ẽ

Twλ

Kλ
(Xλ) = Yλ listed according the order

they were made, and let Zλ = Xλ ⊕ Yλ for each i. Then, since 2Q ≤ 2n/2, we have

1 The event Z2 = Z1 is equivalent with X2 ⊕ Y2 = X1 ⊕ Y1. Wlog assume that the query ẼTw2

K2
(X2) = Y2

occurs after ẼTw1

K1
(X1) = Y1. If Ẽ

Tw2

K2
(X2) = Y2 was due to a forward query ẼTw2

K2
(X2) → Y2, then Y2 is

uniformly distributed in at least 2n − 2Q possibilities, and the probability to have X2 ⊕ Y2 = X1 ⊕ Y1 is
at most 1/(2n − 2Q) ≤ 2/2n; if ẼTw2

K2
(X2) = Y2 was due to a backward query (ẼTw2

K2
)−1(Y2)→ X2, then X2

is uniformly distributed in at least 2n − 2Q possibilities, and the probability to have X2 ⊕ Y2 = X1 ⊕ Y1

remains at most 1/(2n − 2Q) ≤ 2/2n. Therefore, it always holds Pr[Z2 = Z1] ≤ 1
2n−2Q ≤ 2

2n ;

2 Similarly to Pr[Z2 = Z1], Pr[Z3 = Z1] ≤ 1
2n−2Q ≤ 2

2n , ..., Pr[Zλ = Z1] ≤ 1
2n−2Q ≤ 2

2n .

Thus in total we have

Pr[λ collisions] ≤
(
2Q

λ

)
·
(

2

2n

)λ−1

≤ (4Q)λ

λ!2(λ−1)n
.

When λ = n+ 1 and n ≥ 2 and Q ≤ 2n/8 (thus 8Q/2n ≤ 1), we further have

Pr
[(
(K1, Tw1, X1), . . . , (Kn+1, Twn+1, , Xn+1)

)
← AẼ : ẼTw1

K1
(X1)⊕X1 = . . . = Ẽ

Twn+1

Kn+1
(Xn+1)⊕Xn+1

]

≤ (4Q)λ

λ!2(λ−1)n
≤ 1

2× (n+ 1)!
×
(8Q
2n

)n+1

≤ 1

2× 3!
× 8Q

2n

≤ Q

2n

as claimed.
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A.4 Idealizing Romulus-T

Our proofs will frequently employ idealized Romulus-T scheme, in which the TBC calls using the master key are
replaced by a (secret) tweakable random permutation. In detail, in the real scheme Romulus-T[Ẽ], we introduce a

random tweakable permutation P̃ that is independent from Ẽ, and replace all calls to Ẽ
(0n,66,0n−8)
K (X)/Ẽ

(R,68,0n−8)
K (X)

and (Ẽ
(0n,66,0n−8)
K )−1(Y )/(Ẽ

(R,68,0n−8)
K )−1(T ) by calls to a random tweakable permutation P̃(0n,66,0n−8)(X)/P̃(R,68,0n−8)(X)

and (P̃(0n,66,0n−8))−1(Y )/(P̃(R,68,0n−8))−1(T ). Denote the obtained idealized scheme by Romulus-T[Ẽ, P̃]. It is

easy to see that, there exists a distinguisher D that has access to either (Ẽ∗
K , Ẽ) or (P̃, Ẽ) and makes at most 2q

queries to Ẽ∗
K/P̃ and Q (see Eq. (9)) queries to Ẽ, such that

∣∣∣∣Pr
[
AGame

(
Romulus-T[Ẽ],Ẽ

)
⇒ 1

]
− Pr

[
AGame

(
Romulus-T[Ẽ,P̃],Ẽ

)
⇒ 1

]∣∣∣∣

≤
∣∣∣Pr

[
DẼ∗

K ,Ẽ ⇒ 1
]
− Pr

[
DP̃,Ẽ ⇒ 1

]∣∣∣

≤ Q

2n
. (10)

The latter bound Q/2n follows from [9, Theorem 6].

B Proof of Theorem 1

Since we assume leak-freeness of the TBC calls Ẽ
(0n,66,0n−8)
K (X)/Ẽ

(R,68,0n−8)
K (X) using the master AEAD key

K, we are able to idealize the schemes using the results in Appendix A.4:

AdvCIML2
Romulus-T[Ẽ]

(A)−AdvCIML2
Romulus-T[Ẽ,P̃]

(A) ≤ Q

2n
(11)

when the adversarial power of A is as assumed in Theorem 1 and Q := 3σm + σa + 6(qe + qd) + qẼ.

We can thus focus on establishing unforgeability for the idealized schemes Romulus-T[Ẽ, P̃]. Denote by G1 the

game that captures the interaction between the CIML2 adversary A and Romulus-T[Ẽ, P̃]. Following Hirose [12],

we normalize the game: for each Ẽ query either made by A, we assume the system makes its Hirose matching
query immediately (see Sect. A.3). Denote G2 the obtained normalized game. By Eq. (9), Ẽ receives at most

Q queries in G1. Therefore, in G2, the number of Ẽ queries doesn’t exceed 2Q, and the number of (unordered)

matching Ẽ query pairs is at most Q. Clearly,

Pr
[
A forges in G1

]
≤ Pr

[
A forges in G2

]
,

and we divide the unforgeability argument for G2 into two substeps in two paragraphs below: first, we define
and bound several simple bad events that may occur during an execution of the game G2; then, we show A is
unable to forge in G2 as long as none of these conditions is fulfilled.

B.1 Bad Events for Unforgeability

We keep a list
QẼ =

(
(K1, Tw1, X1, Y1), . . . , (KqẼ

, TwqẼ
, XqẼ

, YqẼ
)
)

for the transcript of queries and responses to the ideal TBC Ẽ that appeared during the execution of the

game G2, where the j-th tuple (Kj , Twj , Xj , Yj) indicates either a forward query Ẽ
Twj

Kj
(Xj)→ Yj or a backward

(Ẽ
Twj

Kj
)−1(Yj)→ Xj . Based on QẼ and the definition of Romulus-H, we define

Q∗
H :=

(
(U1, L1∥R1), (U2, L2∥R2), . . .

)

as the pairs of inputs and outputs of the hash Romulus-T[Ẽ] that can be determined by the information in QẼ,
where Uj ∈ {0, 1}∗ is the (variable size) hash input and Lj , Rj ∈ {0, 1}n keep the output. Actually, Q∗

H keeps
the hash evaluations that might appear during the execution of the game G2.

With these, we identify the following events during an execution of G2:

– (B-1)Hash collision: there exist distinct hash records (U,L∥R) ̸= (U∗, L∗∥R∗) ∈ Q∗
H such that L∥R = L∗∥R∗;

– (B-2)Multi hash semi-collision: µR ≥ n+ 1, where

µR := maxr∈{0,1}n

∣∣∣
{
(U,L∥R) ∈ Q∗

H : R = r
}∣∣∣.

To bound the probabilities, we need to rely on a useful lemma on collision security of Romulus-H, which is
stated and proven in the following paragraph.

12



Multi-semicollision Resistance of Romulus-H. We will need the (multi-semi) collision resistance of Romulus-H[Ẽ],
which is formally stated as follows.

Lemma 5. Consider any oracle machine AẼ making Q (unordered) pairs of matching queries to the ideal TBC

Ẽ, such that Q ≤ 2n/8. Then, the probability to observe either of the following two events is at most 11Q
2n :

1 Collision on Romulus-H[Ẽ]: there exist two distinct pairs (U,L∥R) and (U∗, L∗∥R∗) in Q∗
H such that L∥R =

L∗∥R∗;
2 Multi-semicollision on Romulus-H[Ẽ]: µR ≥ n+ 1, where

µR := maxr∈{0,1}n

∣∣∣
{
(U,L∥R) ∈ Q∗

H : R = r
}∣∣∣.

Proof. We denote by G1 the game that captures the interaction between the adversary A and Ẽ.

Bad events.. We define three bad events during the execution of G1:

– (B-1): Collision on compression function. Formally, there exist two distinct pairs of Ẽ query records
(
(R∥M,L, Y1), (R∥M,L⊕

θ, Y2)
)
and

(
(R′∥M ′, L′, Y ′

1), (R
′∥M ′, L′ ⊕ θ, Y ′

2)
)
such that:

• L⊕ Y1 = L′ ⊕ Y ′
1 , and L⊕ θ ⊕ Y2 = L′ ⊕ θ ⊕ Y ′

2 ; or
• L⊕ Y1 = L′ ⊕ θ ⊕ Y ′

2 , and L⊕ θ ⊕ Y2 = L′ ⊕ Y ′
1 .

– (B-2): Hitting initial-vector. there exist a pair of Ẽ query records
(
(R∥M,L, Y1), (R∥M,L⊕θ, Y2)

)
such that

L⊕ Y1 = L⊕ θ ⊕ Y2 = 0n (i.e., Hir[Ẽ](L∥R,M) = 02n);
– (B-3): n-collision. there exist n+ 1 records (R1∥M1, L1, Y1), . . . , (Rn+1∥Mn+1, Ln+1, Yn+1) ∈ Q∗

Ẽ
such that

L1 ⊕ Y1 = . . . = Ln+1 ⊕ Yn+1.

Lemmas 3 and 4 immediately imply

Pr
[
(B-1)

]
≤ 6Q

2n
, Pr

[
(B-3)

]
≤ Q

2n
.

For (B-2), consider any pair
(
(R′∥M ′, L′, Y ′

1), (R
′∥M ′, L′ ⊕ θ, Y ′

2)
)
. Clearly, regardless of the directions of

these two queries, it holds Pr[Y1 = L ∧ Y2 = L⊕ θ] ≤ 1
(2n−2Q)2 ≤ 4

22n when 2Q ≤ 2n/2, and thus

Pr
[
(B-2)

]
≤ 4Q

22n
.

A union bound yields

Pr
[
(B-1) ∨ (B-2) ∨ (B-3)

]
≤ 11Q

2n
.

Claims on Romulus-H[Ẽ]. Then, conditioned on ¬(B-1) ∧ ¬(B-2) ∧ ¬(B-3), we argue that the two events on

Romulus-H[Ẽ] cannot occur, so that Pr
[
(B-1) ∨ (B-2) ∨ (B-3)

]
provides the bound.

We first consider event (1) (collision). For any two hash records (U,L∥R) and (U∗, L∗∥R∗), assume that tail
is the maximum common suffix of U and U∗, i.e., U = header∥v∥tail, U∗ = header∗∥v∗∥tail, |v| = |v∗| = 2n,
v ̸= v∗, and |header|, |header∗|, and |tail| are multiples of 2n. Then we distinguish two cases:

Case 1: either header∥v or header∗∥v∗ is empty. Without loss of generality, we assume header∥v is empty.

Since U isn’t empty, this means tail isn’t empty. Then in Romulus-H[Ẽ](U∗), the hash-chain value after ab-
sorbing v∗ is different from the initial vector 02n by ¬(B-2). So the two “first-block” calls in absorbing tail

in Romulus-H[Ẽ](U) and Romulus-H[Ẽ](U∗) are different. By ¬(B-1), this means the resulted hash-chain values

are different. Then by iteratively applying ¬(B-1), it can be seen the “last-block calls” in Romulus-H[Ẽ](U) and

Romulus-H[Ẽ](U∗) are different, and further L∥R ̸= L∗∥R∗.

Case 2: neither header∥v or header∗∥v∗ is empty. Then by ¬(B-1), the two hash-chain values after ab-

sorbing v ̸= v∗ are different. If tail is empty, then as v ̸= v∗ the “last-block calls” in Romulus-H[Ẽ](U) and

Romulus-H[Ẽ](U∗) are clearly different and further L∥R ̸= L∗∥R∗; otherwise, L∥R ̸= L∗∥R∗ follows by itera-
tively applying ¬(B-1).

We then consider event (2) (multi-semicollision). The above show that distinct hash inputs U and U∗

necessarily result in distinct “last-block-calls”. By this, any n+ 1 hash inputs (U1, . . . , Un+1) necessarily result

in n distinct “last-block-calls” denoted Hir[Ẽ](L1, R1,M1), . . . ,Hir[Ẽ](Ln+1, Rn+1,Mn+1). By the definition of
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Hir[Ẽ], it can be seen such a multi-semicollision correspond to an (n+1)-collision on the Davies-Meyer function.
Concretely, assume that for

L′
1∥R′

1 = Hir[Ẽ](L1, R1,M1), . . . , L
′
n+1∥R′

n+1 = Hir[Ẽ](Ln+1, Rn+1,Mn+1),

it holds R′
1 = . . . = R′

n+1, then it essentially holds

ẼM1

R1
(L1 ⊕ θ)⊕ (L1 ⊕ θ) = . . . = Ẽ

Mn+1

Rn+1
(Ln+1 ⊕ θ)⊕ (Ln+1 ⊕ θ),

contradicting ¬(B-3). These complete the proof. ⊓⊔

Probability of bad events. For simplicity let Bad = (B-1) ∨ (B-2), then Lemma 5 implies

Pr
[
Bad

]
≤ 11Q

2n
. (12)

B.2 Unforgeable unless Bad

Conditioned on ¬Bad, we argue all non-trivial decryption queries (N,A,C, T ) (see Definition 3) result in ⊥
except with a bounded probability.

If decrypting (N,A,C, T ) does not yield ⊥, then right after this decryption finished, there exists a hash

record (RTpad(A,N,C), L∥R) ∈ Q∗
H and a P̃ query P̃R∗

(L∗) = T in the history, such that R∗ = R and L∗ = L.
This means at some time during the execution, the following query records exist in the history:

(Tw,K,X, Y1) ∈ Q∗
Ẽ
, (Tw,K,X ⊕ θ, Y2) ∈ Q∗

Ẽ
, P̃(R∗,68,0n−8)(L∗) = T,

where Tw∥K is the concatenation of the last block of the Romulus-H[Ẽ] input RTpad(A,N,C) and an n-bit
previous chain value, and X ⊕ Y1 = L = L∗ and X ⊕ θ ⊕ Y2 = R = R∗. We distinguish two cases as follows.

Case 1: The internal query for P̃(R∗,68,0n−8)(L∗) = T happens After the pair of Ẽ queries. As R∗ = R, we sim-

plify the notation as P̃(R,68,0n−8)(L∗) = T . We argue it cannot be a forward query P̃(R,68,0n−8)(L∗) → T .
For this, assume otherwise, then it’s due to an earlier encryption query LEK(N ′, A′,M ′) → (C ′, T ), and that

Romulus-H[Ẽ](RTpad(A′, N ′, C ′)) = L∥R (i.e., it collides with the hash evaluation Romulus-H[Ẽ](RTpad(A,N,C)) =
L∥R in question). Now,

– if (N,A,C) = (N ′, A′, C ′), then since we forbid trivial decryption queries, the tag produced by LEK(N ′, A′,M ′)
cannot be T , and hence cannot trigger the query P̃(R,68,0n−8)(L∗)→ T ;

– if (N,A,C) ̸= (N ′, A′, C ′), then by Lemma 2 we have RTpad(A,N,C) ̸= RTpad(A′, N ′, C ′), which further
implies a hash collision and contradicts ¬(B-1).

In all, it has to be backward (P̃(R,68,0n−8))−1(T )→ L∗. During the execution of G2, the number of such backward
queries is at most qd. Conditioned on ¬(B-2), the number of encountered hash records (U†, L†∥R†) ∈ Q∗

H with
R† = R is at most n. This implies that the number of “target” L† values is also at most n. For each such
“target” L† and each backward query (P̃(R,68,0n−8))−1(T )→ L∗, we have

Pr[L∗ = L†] ≤ 1

2n − qe − qd
≤ 2

2n
.

Therefore,

Pr
[
Case 1 | ¬Bad

]
≤ 2nqd

2n
. (13)

Case 2: The internal query for P̃(R∗,68,0n−8)(L∗) = T happens Before the pair of Ẽ queries. We consider the query
(Tw,K,X, Y1) first. Regardless of its direction, either X or Y1 is uniform in at least 2n− 2Q possibilities. Thus,
when Q ≤ 2n/4, it holds

Pr[X ⊕ Y1 = L∗] ≤ 1

2n − 2Q
≤ 2

2n
.

Similarly,

Pr[X ⊕ θ ⊕ Y2 = R∗] ≤ 1

2n − 2Q
≤ 2

2n
.
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Therefore, for each such triple of queries, the probability of collision is at most 4
22n . We have at most qd + qe

choices for the P̃ record P̃(R∗,68,0n−8)(L∗) = T , and 2Q choices for the (ordered) pair of Ẽ queries. Therefore,

Pr
[
Case 2

]
≤ 8Q(qd + qe)

22n
. (14)

Note that these arguments are significantly simplified by the normalization of the game: without the nor-
malization, the query for P̃(R∗,68,0n−8)(L∗) = T may happen between the two “matching” Ẽ queries, giving rise
to many additional cases.

B.3 Summarizing

Gathering Eqs. (12), (13) and (14) yields

AdvCIML2
Romulus-T[Ẽ,P̃],L∗(D) ≤

11Q+ 2nqd
2n

+
8Q(qd + qe)

22n
. (15)

This plus the gap term Eq. (10) yield Theorem 1 (more precisely, Eq. (1)).

C Proof of Theorem 2

C.1 CCA to CPA

Note that in the misuse resilience setting, schemes which achieve both CPA confidentiality and authenticity also
achieve CCA confidentiality [2]:

AdvCCAm$∗

AEAD (A) =
∣∣∣Pr

[
AEK ,EK ,DK ,Ẽ,Ẽ−1 ⇒ 1

]
− Pr

[
AEK ,$,⊥,Ẽ,Ẽ−1 ⇒ 1

]∣∣∣

≤
∣∣∣Pr

[
AEK ,EK ,DK ,Ẽ,Ẽ−1 ⇒ 1

]
− Pr

[
AEK ,EK ,⊥,Ẽ,Ẽ−1 ⇒ 1

]∣∣∣
︸ ︷︷ ︸

AdvINT-CTXT
AEAD (A): INT-CTXT advantage of A on AEAD

+
∣∣∣Pr

[
AEK ,EK ,⊥,Ẽ,Ẽ−1 ⇒ 1

]
− Pr

[
AEK ,$,⊥,Ẽ,Ẽ−1 ⇒ 1

]∣∣∣
︸ ︷︷ ︸

defined as AdvCPAm$
AEAD (A)

. (16)

Clearly, AdvINT-CTXT
Romulus-T(A) ≤ AdvCIML2

Romulus-T(A). Therefore, we focus on the CPA advantage AdvCPAm$
Romulus-T(A)—

switching to the CPA setting greatly simply the setting as well as the notations.

C.2 CPAm$ Security of Romulus-T

In a similar vein to Appendix B, we could focus on CPA security of the idealized schemes Romulus-T[Ẽ, P̃], with
the gap due to Eq. (10) in mind:

AdvCPAm$

Romulus-T[Ẽ]
(A)−AdvCPAm$

Romulus-T[Ẽ,P̃]
(A) ≤ Q

2n
(17)

when the adversarial power of A is as assumed in Theorem 2, and Q := 3σm + σa + 6(qe + qd + qm) + qẼ.

To bound AdvCPAm$

Romulus-T[Ẽ,P̃]
(A), we will employ Patarin’s H-coefficient technique.

Transcripts. In the CPAm$ setting, we summarize the adversarial queries to the ideal TBC Ẽ in the set
QẼ =

(
(K1, Tw1, X1, Y1), . . . , (KqẼ

, TwqẼ
, XqẼ

, YqẼ
)
)
. During the interaction, we reveal all the Ẽ queries internally

made by Romulus-T[Ẽ, P̃] and the Ẽ queries underlying the non-challenge encryption queries (i.e., queries to the
first encryption oracle). These queries also give rise to records of the form (K,Tw, X, Y ). To make a distinction,
we denote by Q∗

Ẽ
the union of these records and the adversarial query transcript QẼ. Thus we have

∣∣Q∗
Ẽ

∣∣ ≤ Q

which is as defined by Eq. (9). Following Sect. B, we also keep the list Q∗
H =

(
(U1, L1∥R1), (U2, L2∥R2), . . .

)
for

the appeared inputs and outputs of the hash Romulus-H[Ẽ].
Besides, the list

Qe =
(
(N1, A1,M1, C1, T1), . . . , (Nqe , Aqe ,Mqe , Cqe , Tqe)

)

summarizes the queries to the challenge (second) encryption oracle, indicating that the j-th challenge encryption
query (Nj , Aj ,Mj) gives rise to (Cj , Tj). For any pair of indices (j, ℓ) ∈ {1, ..., qe}× {1, ...,mj} that pinpoints a
message block, let Yj [ℓ] = Mj [ℓ]⊕Cj [ℓ]. Recall that we’ve switched to the CPA setting, so there is no “decryption
query transcript”.

In all, we define the transcript as
Q = (Q∗

H,Qe,Q∗
Ẽ
).
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H-coefficient lemma. With respect to some fixed distinguisher A, a transcript Q is called attainable if there
exist oracles (Ẽ, P̃) such that the interaction of A with the ideal scheme Romulus-T[Ẽ, P̃] yields Q. We denote
Θ the set of attainable transcripts. In all the following, we denote Tre, resp. Tid, the probability distribution of
the transcript Q induced by the real world, resp. the ideal world (note that these two probability distributions
depend on the distinguisher). By extension, we use the same notation to denote a random variable distributed
according to each distribution.

With the above, the main lemma of H-coefficient technique is as follows.

Lemma 6. Fix a distinguisher A. Let Θ = ΘGood ∪ ΘBad be a partition of the set of attainable transcripts Θ.
Assume that there exists ε1 such that for any Q ∈ ΘGood, one has

Pr[Tre = Q]
Pr[Tid = Q]

≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ ΘBad] ≤ ε2. Then Adv(A) ≤ ε1 + ε2.

A proof could be found in [8].

Given a set QẼ and an ideal TBC Ẽ, we say that Ẽ extends QẼ, denoted Ẽ ⊢ QẼ, if ẼTw

K (X) = Y for
all (K,Tw, X, Y ) ∈ QẼ. It’s easy to see that for any attainable transcript Q = (Q∗

H,Qe,Q∗
Ẽ
), the interaction

of A with oracles (Romulus-T[Ẽ, P̃], Ẽ) produces Q if and only if Ẽ ⊢ QẼ and the encryption oracle responds
consistently with Qe.

Wlog assume that |Mj [ℓ]| = n for any message block Mj [ℓ]. Then, in the ideal world, all the blocks in
C1, . . . , Cqe are uniformly distributed in {0, 1}n. Therefore,

Pr
[
Tid = Q

]
= Pr

[
Ẽ ⊢ Q∗

Ẽ

]
×
(

1

2n

)qe+
∑qe

i=1 mi

. (18)

Bad Transcripts. With the above, a transcript Q is bad if one of the following is fulfilled:

– (B-1) µY ≥ 2 log2 σm, where

µY := max
Y ∈{0,1}n

∣∣{(j, ℓ) : j ∈ {1, ..., qe}, {1, ...,mj}, Mj [ℓ]⊕ Cj [ℓ] = Y }
∣∣.

– (B-2)Multi hash semi-collision: µR ≥ n+ 1, where

µR := maxr∈{0,1}n

∣∣∣
{
(U,L∥R) ∈ Q∗

H : R = r
}∣∣∣.

– (B-3) there exists two distinct encryption queries (Nj , Aj ,Mj , Cj , Tj) and (Nj′ , Aj′ ,Mj′ , Cj′ , Tj′) with the
corresponding hash records (RTpad(Aj , Nj , Cj), Lj∥Rj) ̸= (RTpad(Aj′ , Nj′ , Cj′), Lj′∥Rj′) ∈ Q∗

H satisfying
either of the follows:
• (B-31)hash collision: Lj∥Rj = Lj′∥Rj′ , or
• (B-32)contradiction: Rj = Rj′ and Tj = Tj′ .

For (B-1), in the ideal world Cj [ℓ] and thus Mj [ℓ] ⊕ Cj [ℓ] is uniform. In addition,
∑qe

j=1 mj = σm ≪ 2n.
Hence, Lemma 1 implies

Pr
[
(B-1)

]
= Pr

[
µY ≥ 2 log2 σm

]
≤ 1

2n
.

By Lemma 5, we have

Pr
[
(B-2) ∨ (B-31)

]
≤ 11Q

2n
.

Conditioned on ¬(B-2), for any (Nj , Aj ,Mj , Cj , Tj) ∈ Qe with (RTpad(Aj , Nj , Cj), Lj∥Rj) ∈ Q∗
H, the num-

ber of (Nj′ , Aj′ ,Mj′ , Cj′ , Tj′) ∈ Qe with (RTpad(Aj′ , Nj′ , Cj′), Lj′∥Rj′) ∈ Q∗
H is at most n− 1. For each pair of

such indices (j, j′), the tags Tj and Tj′ are uniform in the ideal world, and thus Pr[Tj = Tj′ ] =
1
2n . Since we

have at most qe choices for j, it holds

Pr
[
(B-32) | (B-2)

]
≤ (n− 1)qe

2n
.

In all,

Pr
[
Tid ∈ ΘBad

]
≤ 1

2n
+

11Q

2n
+

(n− 1)qe
2n

≤ 11Q

2n
+

nqe
2n

. (19)
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Ratio of Probabilities of Good Transcripts. Consider an arbitrary good transcriptQ. For any (Nj , Aj ,Mj , Cj , Tj) ∈
Qe, the initial session key S

(j)
0 = P̃(0n,66,0n−8)(Nj) is uniform. With this observation, we define a predicate

BadKD(P̃) to capture the “none-freshness” of this key.

Formally, BadKD(P̃) is fulfilled, if there exists a record (Nj , Aj ,Mj , Cj , Tj) ∈ Qe such that the key S
(j)
0 =

P̃(0n,66,0n−8)(Nj) satisfies one of the follows:

–
(
S
(j)
0 , (0n, 65, π(0)), Nj , ⋆

)
∈ Q∗

Ẽ
, or

–
(
S
(j)
0 , (0n, 64, π(0)), Nj , ⋆

)
∈ Q∗

Ẽ
, or

–
(
S
(j)
0 , (0n, 64, π(0)), ⋆,Mj [1]⊕ Cj [1]

)
∈ Q∗

Ẽ
.

For a pair (N, ℓ) ∈ {0, 1}n × {0, 1, ...}, we define an auxiliary set of keys

Q∗
Ẽ

[
N, ℓ

]
:=

{
S :

(
S, (0n, 65, π(ℓ)), N, ⋆

)
∈ Q∗

Ẽ
or

(
S, (0n, 64, π(ℓ)), N, ⋆

)
∈ Q∗

Ẽ

}
. (20)

In addition, for a key stream block Y ∈ {0, 1}n, define

Q∗
Ẽ

[
Y, ℓ

]−1
:=

{
S :

(
S, (0n, 64, π(ℓ)), ⋆, Y

)
∈ Q∗

Ẽ

}
. (21)

Conditioned on the values of

S
(1)
0 = P̃(0n,66,0n−8)(N1), . . . , S

(j−1)
0 = P̃(0n,66,0n−8)(Nj−1),

the key S
(j)
0 = P̃(0n,66,0n−8)(Nj) is uniform in at least 2n − qe − qm possibilities, since it must be the first (and

unique) time the nonce Nj appears in encryption queries. Therefore, when qe + qm ≤ Q/2 ≤ 2n/2, we have

PrP̃
[
BadKD(P̃)

]
≤

qe∑

j=1

∣∣Q∗
Ẽ

[
Nj , 0

]∣∣
2n − qe − qm

+

qe∑

j=1

∣∣Q∗
Ẽ

[
Yj [1], 0

]−1∣∣
2n − qe − qm

≤
qe∑

j=1

2

∣∣Q∗
Ẽ

[
Nj , 0

]∣∣+
∣∣Q∗

Ẽ

[
Yj [1], 0

]−1∣∣
2n

. (22)

We then analyze the qe encryption queries in turn, and define a sequence of bad predicates

BadE
(1)
1 ,BadE

(1)
2 , . . . ,BadE

(1)
m1−1,

. . .

BadE
(qe)
1 ,BadE

(qe)
2 , . . . ,BadE

(qe)
mqe−1. (23)

As will be seen, each predicate concerns with the encryption of a specific plaintext block. Formally, for 1 ≤ j ≤ qe,
consider the j-th query (Nj , Aj ,Mj , Cj , Tj), and let

S
(j)
0 = P̃(0n,66,0n−8)(Nj), S

(j)
1 = Ẽ

(0n,65,π(0))

S
(j)
0

(Nj), S
(j)
2 = Ẽ

(0n,65,π(1))

S
(j)
1

(Nj), ..., S
(j)
mj−1 = Ẽ

(0n,65,π(mj−2))

S
(j)
mj−2

(Nj)

be the derived intermediate values. Then for 1 ≤ ℓ ≤ mj − 1, BadE
(j)
ℓ (Ẽ) is fulfilled, if any of the following

conditions is fulfilled:

– BadE
(j)
ℓ -(C-1):

(
S
(j)
ℓ , (0n, 65, π(ℓ)), Nj , ⋆

)
∈ Q∗

Ẽ
or

(
S
(j)
ℓ , (0n, 64, π(ℓ)), Nj , ⋆

)
∈ Q∗

Ẽ
, or

(
S
(j)
ℓ , (0n, 64, π(ℓ)), ⋆, Yj [ℓ+ 1]

)
∈ Q∗

Ẽ
;

– BadE
(j)
ℓ -(C-2): S

(j)
ℓ = Yj [ℓ] (recall that Yj [ℓ] = Mj [ℓ]⊕ Cj [ℓ]).

It is not hard to see that, conditioned on Ẽ ⊢ Q∗
Ẽ
and ¬BadKD(P̃) and ¬BadE(j)

ℓ−1(Ẽ) ∧ . . . ∧ ¬BadE(1)
1 (Ẽ), the

value S
(j)
ℓ is uniform in at least 2n −Q possibilities.2 Therefore,

Pr
[
BadE

(j)
ℓ -(C-1) ∨ BadE

(j)
ℓ -(C-2)

]
≤

∣∣∣Q∗
Ẽ
[Nj , ℓ]

∣∣∣+
∣∣∣Q∗

Ẽ
[Yj [ℓ+ 1], ℓ]−1

∣∣∣+ 1

2n −Q
.

2 This proof didn’t normalize A, and thus the number of Ẽ queries remains Q.
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Thus, when Q ≤ 2n/2, we have

Pr
[
BadE

(j)
ℓ (Ẽ) | ¬BadE(j)

ℓ−1(Ẽ) ∧ . . . ∧ ¬BadE(1)
1 (Ẽ) ∧ ¬BadKD(P̃) ∧ Ẽ ⊢ Q∗

Ẽ

]

≤ 2

∣∣∣Q∗
Ẽ
[Nj , ℓ]

∣∣∣+
∣∣∣Q∗

Ẽ
[Yj [ℓ+ 1], ℓ]−1

∣∣∣+ 1

2n
.

For 1 ≤ j ≤ qe and 1 ≤ ℓ ≤ mj − 1, conditioned on ¬BadE(j)
ℓ (Ẽ) ∧ ¬BadE(j)

ℓ−1(Ẽ) ∧ . . . ∧ ¬BadE(1)
1 (Ẽ) ∧

¬BadKD(P̃) ∧ Ẽ ⊢ Q∗
Ẽ
, it can be seen the value Y † = Ẽ

(0n,64,π(ℓ))

S
(j−1)
ℓ

(Nj) is uniform in at least 2n −Q possibilities,

and these possibilities include Yj [ℓ+1] (due to ¬BadE(j)
ℓ -(C-1):

(
S
(j)
ℓ , (0n, 64, π(ℓ)), ⋆, Yj [ℓ+1]

)
/∈ Q∗

Ẽ
). Therefore,

Pr
[
Y † = Yj [ℓ+ 1]

]
≥ 1

2n
. (24)

The probabilities of the predicates, plus Eq. (22), accumulate to

Pr
[
BadE

(qe)
mqe−1(Ẽ) ∨ . . . ∨ BadE

(1)
1 (Ẽ) ∨ ¬BadKD(P̃)

︸ ︷︷ ︸
=Bad(P̃,Ẽ)

| Ẽ ⊢ Q∗
Ẽ

]

≤
qe∑

j=1

mi−1∑

ℓ=0

2

(∣∣∣Q∗
Ẽ
[Nj , ℓ]

∣∣∣+
∣∣∣Q∗

Ẽ
[Yj [ℓ+ 1], ℓ]−1

∣∣∣+ 1

)

2n
.

Since N1, N2, ..., Nqe are distinct, it holds
∑qe

j=1

∑mj−1
ℓ=0

∣∣∣Q∗
Ẽ
[Nj , ℓ]

∣∣∣ ≤ Q. On the other hand,

qe∑

j=1

mj−1∑

ℓ=0

∣∣∣Q∗
Ẽ
[Yj [ℓ+ 1], ℓ]−1

∣∣∣ ≤
∑

Y ∈{0,1}n

∑

(j,ℓ)∈{1,...,qe}×{1,...,mj}:Yj [ℓ]=Y

∣∣∣Q∗
Ẽ
[Y, ℓ]−1

∣∣∣ ≤ µY Q. (25)

Gathering the above yields

Pr
[
Romulus-T[Ẽ, P̃].E(Nj , Aj ,Mj) = Cj for all j ∈ {1, . . . , qe} | Ẽ ⊢ Q∗

Ẽ

]

≥ Pr
[
¬Bad(Ẽ) | Ẽ ⊢ Q∗

Ẽ

]( 1

2n

)∑qe
j=1 mi

≥
(
1− 2Q+ 2µY Q+ 2σm

2n

)(
1

2n

)σm

. (26)

It remains to analyze the produced tags. Let the hash query record corresponding to (Nj , Aj ,Mj , Cj , Tj) be
(Uj , Lj∥Rj). Therefore, the event that the qe tags equal T1, ..., Tqe is equivalent to qe equalities as follows:

P̃(R1,68,0
n−8)(L1) = T1, . . . , P̃

(Rqe ,68,0
n−8)(Lqe) = Tqe .

For the first equality, it clearly holds Pr
[
P̃(R1,68,0

n−8)(L1) = T1

]
= 1

2n . For the j-th equality, j ∈ {1, . . . , qe},
we need to additionally consider the influence of “P̃(Rj′ ,68,0

n−8)(Lj′) = Tj′ for j′ = 1, . . . , j − 1”. By ¬(B-3),
Lj′∥Rj′ ̸= Lj∥Rj and Tj′∥Rj′ ̸= Tj∥Rj for any j′ < j. By this, Pr

[
P̃(Rj ,68,0

n−8)(Lj) = Tj

]
≥ 1

2n , and thus

Pr
[
P̃(Rj ,68,0

n−8)(Lj) = Tj for j = 1, . . . , qe
]
≥ 1

2qen
. (27)

Gathering Eqs. (18), (26) and (27), and with Q ≤ 2n/8⇒ log2 σm ≤ n− 3, we have

Pr[Tre = τ ]

Pr[Tid = τ ]
≥
(
1− 2Q+ 2µY Q+ 2σm

2n

)(
1

2n

)qe+σm
/(

1

2n

)qe+σm

≥ 1− (4n− 8)Q

2n
, (µY ≤ 2 log2 σm ≤ 2(n− 3)).

This plus Eqs. (17) and (19) yield

AdvCPAm$

Romulus-T[Ẽ,P̃]
(D) ≤ (4n+ 4)Q

2n
+

nqe
2n

.

By Eq. (16), this plus the bound in Eq. (1) yields Eq. (2).
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D Proof of Theorem 3

This proof closely follows [4, Sect. 6.5], and the changes are mainly notational. In detail, we first define the
process of encrypting a single message of m blocks. We in particular define both the real and the ideal encryp-
tion processes: the real encryption RESM[Ẽ] “mimics” Romulus-T and queries Ẽ for encrypting one message,
while the ideal process just samples many random values for encrypting. We show that the two processes are
indistinguishable, with the help of the non-invertible leakage assumption.

We then focus on the idealized process ($, Lideal(M)), and show how to relate its eavesdropper advantage to
the term defined by Eq. (5). The (leaking) eavesdropper advantage of (RESM, LRESM(M)) can be derived via:

(leaking) eavesdropper advantage of the minimal operation AdvLORL2

⇒(leaking) eavesdropper advantage of the ideal ($, Lideal(M))

⇒(leaking) eavesdropper advantage of (RESM, LRESM(M)).

As the 3rd step, based on the leaking eavesdropper advantage of (RESM, LRESM(M)), we establish the
CCAmL2 advantage for Romulus-T. Below we expose in detail.

The Ideal Single-Message Encryption Process. Formally, they are defined by the following pseudocode.

Description of RESM[Ẽ]:

– Gen picks S0
$← {0, 1}n

– RESMS0
[Ẽ](N,M [1]∥ . . . ∥M [m]) proceeds in two steps:

(1) Initializes an empty list leak for the leakage;

(2) for i = 1, . . . ,m, computes Si ← Ẽ
(0n,65,π(i−1))
Si−1

(N), Y [i] ← Ẽ
(0n,64,π(i−1))
Si−1

(N), and C[i] ← Y [i] ⊕M [i],

and adds the leakages [Lin(Si−1, (0
n, 65, π(i−1));N), Lout(ki−1, (0

n, 65, π(i−1));Si)]
p, [Lin(ki−1, (0

n, 64, π(i−
1));N), Lout(ki−1, (0

n, 64, π(i− 1));Y [i])]p, L⊕(Y [i],M [i]), and [L⊕(Y [i], C[i])]p−1 to the list leak.

RESMS0
[Ẽ](N,M [1]∥ . . . ∥M [m]) eventually returns C[1]∥...∥C[m].

We define LRESMS0
[Ẽ](N,M [1]∥ . . . ∥M [m]) = (RESMS0

[Ẽ](N,M [1]∥ . . . ∥M [m]), leak) for the list leak stand-
ing at the end of the above process.

Description of IESM (an ideal process independent from Ẽ):

– S0
$← {0, 1}n

– IESMS0
(N,M [1]∥ . . . ∥M [m]) proceeds in two steps:

(1) Initializes an empty list leak for the leakage;

(2) for i = 1, . . . ,m, samples Si
$← {0, 1}n and Y [i]

$← {0, 1}n such that Si ̸= Y [i], sets C[i]← Y [i]⊕M [i],
and adds the leakages [Lin(Si−1, (0

n, 65, π(i−1));N), Lout(ki−1, (0
n, 65, π(i−1));Si)]

p, [Lin(ki−1, (0
n, 64, π(i−

1));N), Lout(ki−1, (0
n, 64, π(i− 1));Y [i])]p, L⊕(Y [i],M [i]), and [L⊕(Y [i], C[i])]p−1 to the list leak.

IESMS0
(N,M [1]∥ . . . ∥M [m]) eventually returns C[1]∥ . . . ∥C[m].

We define LIESMS0
(N,M [1]∥ . . . ∥M [m]) = (IESMS0

(N,M [1]∥ . . . ∥M [m]), leak) for the list leak standing at
the end of the above process.

The real and ideal single-message encryption processes (with leakages) are indistinguishable. This is a nota-
tional adaptation of [4, Lemma 6].

Lemma 7. For every m-block message M , every nonce N , and every distinguisher DẼ that makes qẼ queries

to Ẽ and runs in time t, it holds

∣∣Pr[DẼ(M,RESMS0
[Ẽ](N,M [1]∥ . . . ∥M [m]))⇒ 1]− Pr[DẼ(M, IESMS0

(N,M [1]∥ . . . ∥M [m]))⇒ 1]
∣∣

≤m ·Adv2-up[qẼ](p, qẼ + 2m,O(t+m · p · tl))

where tl is the total time needed for evaluating Lin and Lout.
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From 1-Block to m-Block Advantage. We then show the eavesdropper advantage of IESM[Ẽ] encrypting
an m-block message is related to the defined term AdvLORL2. This is a notational adaptation of [4, Lemma 7].

Lemma 8. For every pair of m-block messages M0 and M1 and every distinguisher DẼ that makes qẼ queries

to Ẽ and runs in time t, it holds

∣∣Pr[AẼ(IESMS0
(N,M0))⇒ 1]− Pr[AẼ(IESMS0

(N,M1))⇒ 1]
∣∣ ≤ m ·AdvLORL2(p, qẼ, O(t+m · p · tl)) +

m

2n
,

where tl is as defined in Lemma 7.

For simplicity, we define

Adveavl2
RESM(p, qẼ, t,m) := max

A

{∣∣Pr[AẼ(LRESMS0
[Ẽ](N,M0))⇒ 1]− Pr[AẼ(LRESMS0

[Ẽ](N,M1))⇒ 1]
∣∣
}
,

where the abbreviation eavl2 stands for eavesdropper security with encryption and decryption leakages, and the
maximal is taken over all adversaries making qẼ queries to Ẽ and running in time t. Gathering Lemmas 7 and 8,
we obtain upper bounds on the eavesdropper advantage of RESM (which is also the eavesdropper advantage of
Romulus-T, since RESM “mimics” Romulus-T) stated in Lemma 9. This is a notational adaptation of [4, Lemma
8].

Lemma 9. For every pair of m-block messages M0 and M1 and every eavesdropper adversary AẼ that makes
qẼ queries to Ẽ and runs in time t, it holds

Adveavl2
RESM(A) =

∣∣Pr[AẼ(RESMS0
[Ẽ](N,M0))⇒ 1]− Pr[AẼ(RESMS0

[Ẽ](N,M1))⇒ 1]
∣∣

≤m

2n
+m ·AdvLORL2(p, qẼ, O(t+m · p · tl)) + 2m ·Adv2-up[qẼ](p, qẼ + 2m,O(t+m · p · tl)),

where tl is as defined in Lemma 7.

Completing the CCAmL2 Proof. We now establish Theorem 3 with the help of Lemma 9.
First, recall from Definition 3 that a decryption query DK(N,A,C) is trivial if the action EK(N,A,M)→ C

happens before. The leakages of trivial decryption queries may serve new information, thus requiring explicit
treatments.

Then we step into the proof. For convenience, let G0 be the game PrivKCCAmL2,0
A,AEAD,L, while G∗

0 the game

PrivKCCAmL2,1
A,AEAD,L. The goal thus reduces to bounding

∣∣Pr[G0 ⇒ 1]− Pr[G∗
0 ⇒ 1]

∣∣.
We proceed with the standard hybrid argument. For this, we first define two games G1 and G∗

1: G1, resp.

G∗
1, is obtained from G0, resp. G

∗
0, by replacing all the KDF- and TGF-calls by calls to P̃. By Eq. (11), with

Q = 3σm + σa + 6(qe + qd + qm) + qẼ, we have

∣∣Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]
∣∣ ≤ Q

2n
and

∣∣Pr[G∗
1 ⇒ 1]− Pr[G∗

0 ⇒ 1]
∣∣ ≤ Q

2n
. (28)

Starting from G1 and G∗
1, we define two more games G2 and G∗

2: G2, resp. G
∗
2, is obtained from G1, resp. G

∗
1,

by replacing the leaking decryption oracle LD (see Fig. 1) with the “always ⊥” decryption oracle LD⊥
K defined

in Definition 3. It is easy to see

∣∣Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]
∣∣ ≤ AdvCIML2

Romulus-T[Ẽ,P̃]
(A) ≤ 11Q+ 2nqd

2n
+

8Q(qd + qe + qm)

22n
,

∣∣Pr[G∗
2 ⇒ 1]− Pr[G∗

1 ⇒ 1]
∣∣ ≤ AdvCIML2

Romulus-T[Ẽ,P̃]
(A) ≤ 11Q+ 2nqd

2n
+

8Q(qd + qe + qm)

22n
(29)

by adapting Eq. (14).

We then prove that

∣∣Pr[G2 ⇒ 1]− Pr[G∗
2 ⇒ 1]

∣∣

≤ ∑qe
i=1 Adveavl2

RESM(p, qẼ +Q,O(t+ pσmtl),mi)︸ ︷︷ ︸
≤σm

2n +σm·AdvLORL2(p,qẼ+Q,O(t+pσmtl))+2σm·Adv
2-up[q

Ẽ
+Q]

(p,qẼ+Q,O(t+pσmtl)) (Lemma 9)

, (30)
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where mi is the number of blocks in the ith challenge message, and Q = 3σm + σa + 6(qe + qd + qm) + qẼ and
tl defined in Lemma 7. Gathering this and the gaps in Eqs. (28) and (29), we have

AdvCCAmL2
Romulus-T,L(qe, qm, qd, p− 1, qẼ, σa, σm, t)

=
∣∣Pr[G0 ⇒ 1]− Pr[G∗

0 ⇒ 1]
∣∣

≤ 2×
( Q

2n
+

11Q+ 2nqd
2n

+
8Q(qd + qe + qm)

22n

)
+

σm

2n︸︷︷︸
≤Q/2n

+σm ·AdvLORL2(p, qẼ +Q,O(t+ pσmtl)) + 2σm ·Adv2-up[qẼ+Q](p, qẼ +Q,O(t+ pσmtl))

≤ 25Q+ 4nqd
2n

+
16Q(qd + qe + qm)

22n
+ σm ·AdvLORL2(p, q∗, t∗) + 2σm ·Adv2-up[q∗](p, q∗, t∗). (31)

These establish the claim Eq. (8).

To prove Eq. (30), we denote the qe challenge tuples by (the suffix c stands for “challenge”)

(Nc1, Ac1,Mc01,Mc11), . . . , (Ncqe , Acqe ,Mc0qe ,Mc1qe).

Then, we use qe hops to replace Mc01, . . . ,Mc0qe by Mc11, . . . ,Mc1qe in turn, to show that G2 can be transited to
G∗
2. For convenience, we define G3,0 = G2, and define a sequence of games

G3,1,G3,2, . . . ,G3,qe ,

such that in the i-th system G3,i, the first imessages processed by the challenge encryption oracle areMc01, . . . ,Mc0i ,
while the remaining qe − i messages being processed are Mc1i+1, . . . ,Mc1qe . It can be seen actually G3,qe = G∗

2.

We then show that for i = 1, . . . , qe, G3,i−1 and G3,i are indistinguishable for AẼ. For this, from AẼ we build

an adversary AẼ
2 , such that |Pr[G3,i−1 ⇒ 1] − Pr[G3,i ⇒ 1]| is related to Adveavl2

RESM(AẼ
2). In detail, initially,

AẼ
2 prepares a pair of tables (PTable, PTable−1) to simulate the primitive P̃ via lazy sampling (recall that P̃

is a random tweakable permutation independent from Ẽ). Assume that entries in the tables are of the form
PTable(Tw, X) = Y and PTable−1(Tw, Y ) = X. It then runs A, reacting as follows:

– Upon a query to Ẽ: simply relays.
– Upon a (non-challenge) encryption query (Ni, Ai,Mi) from A,
• if ((0n, 66, 0n−8), Ni) /∈ PTable,AẼ

2 samples an initial key S
(i)
0 such that ((0n, 66, 0n−8), S

(i)
0 ) /∈ PTable−1,

defines PTable((0n, 66, 0n−8), Ni) ← S
(i)
0 and PTable−1((0n, 66, 0n−8), S

(i)
0 ) ← Ni, and then runs

the encryption process RESM
S

(i)
0
[Ẽ](Ni,Mi) to get the ciphertext Ci and leakages. AẼ

2 then computes

Li∥Ri ← Romulus-H[Ẽ](RTpad(Ai, Ni, Ci)) and Ti ← PTable((Ri, 68, 0
n−8), Li) (if ((Ri, 68, 0

n−8), Li) /∈
PTable then AẼ

2 defines PTable((Ri, 68, 0
n−8), Li) to a newly sampled value). For this entire process

AẼ
2 has to make at most 3mi + ai + 6 queries to Ẽ with mi = |Mi|n and ai = |Ai|n (as analyzed in

Appendix A.2) and spends O(pmitl) time to evaluating the leakage functions. Finally, AẼ
2 returns the

results (Ci, Ti) and the leakages to A;
• if ((0n, 66, 0n−8), Ni) ∈ PTable, AẼ

2 simply runs RESMS0
(Ni,Mi) with S0 = PTable((0n, 66, 0n−8), Ni),

calls Li∥Ri ← H(RTpad(Ai, Ni, Ci)) and computes the tag Ti ← PTable((Ri, 68, 0
n−8), Ri) on the

obtained Ci, and returns (Ci, Ti) and the leakages to A. The cost is similar to the above case.

– Upon a trivial decryption query (Nj , Aj , Cj , Tj) from A (cf. the beginning of this subsection for “trivial”),

AẼ
2 simply runs the decryption RESM[Ẽ].DecSj

0
(Nj , Cj) for S

j
0 = PTable((0n, 66, 0n−8), Nj), and relays the

outputs to A. The cost is similar to the encryption case.

– Upon a non-trivial decryption query (Nj , Aj , Cj , Tj) fromA,AẼ
2 computes Lj∥Rj ← Romulus-H[Ẽ](RTpad(Aj , Nj , Cj)).

Then,

• if ((Rj , 68, 0
n−8), Tj) /∈ PTable−1, AẼ

2 samples L∗
j such that ((Rj , 68, 0

n−8), L∗
j ) /∈ PTable, and sets

PTable((Rj , 68, 0
n−8), Lj)← Tj , PTable−1((Rj , 68, 0

n−8), Tj)← L∗
j ;

• if ((Rj , 68, 0
n−8), Tj) ∈ PTable−1, AẼ

2 just sets L∗
j ← PTable−1((Rj , 68, 0

n−8), Tj).

Recall that AẼ
2 is mimicking “always ⊥” decryption oracle LD⊥

K . Therefore, it returns (⊥, L∗
j ) to A.

– Upon A submitting the j-th challenge tuple (Ncj , Acj ,Mc0j ,Mc1j ), since the nonce Ncj is fresh (by the

restriction of CCAmL2), it holds ((0n, 66, 0n−8), Ncj) /∈ PTable. Therefore, depending on j, AẼ
2 reacts as

follows:

21



• When j < i, it encrypts Mc0j and returns. In detail, AẼ
2 samples Sc

(j)
0

$← {0, 1}n, sets table en-

tries PTable((0n, 66, 0n−8), Ncj) ← Sc
(j)
0 and PTable−1((0n, 66, 0n−8), Sc

(j)
0 ) ← Ncj), and then runs

RESM
Sc

(j)
0
[Ẽ](Mc0j ) to have the ciphertext Ccj , performs the tag generation accordingly to produce

Tcj and returns (Ccj , T cj) and the leakages to AẼ. The cost is similar to the non-challenge encryption
queries.

• When j = i, it relays Mc0j and Mc1j to its eavesdropper challenger to obtain Ccbj and leakages leakenc and

[leakdec]
p−1, and then performs the tag generation accordingly to produce Tcj and returns (Ccbj , T cj) to

A. Note that this means the relation PTable((0n, 66, 0n−8), Ncj) = Sch
0 is implicitly fixed, where Sch

0 is
the secret key generated inside the eavesdropper challenger;

• When j > i, it simply encrypts Mc1j and returns. The details are similar to the described case j < i.
– Upon A making the λ-th query to Ldecch(j) (1 ≤ λ ≤ p− 1),

• When j ̸= i, AẼ
2 performs the corresponding decryption and returns the obtained leakages to A;

• When j = i, AẼ
2 simply returns the λ-th leakage in the vector [leakdec]

p−1 as the answer.

It can be seen that the whole process is the same as either G3,i−1 or G3,i depending on whether b = 0 or 1.

By the remarks before, besides running A, AẼ
2 samples at most 2(qm + qe + qd) random values (to emulate P̃)

and internally processes qm + qe + qd − 1 encryption/decryption queries (except for the query encrypted by the

challenger). Therefore, AẼ
2 makes Q = 3σm + σa + 6(qe + qd + qm) additional queries to Ẽ, and evaluates the

leakage functions for 2pσm times, resulting in O(pσmtl) added running time. Therefore, we have

∣∣Pr[G3,i ⇒ 1]− Pr[G3,i−1 ⇒ 1]
∣∣ ≤ Adveavl2

RESM(p, qẼ +Q,O(t+ pσmtl),mi).

This means

∣∣Pr[G∗
2 ⇒ 1]− Pr[G2 ⇒ 1]

∣∣ ≤
∣∣Pr[G3,qe ⇒ 1]− Pr[G3,0 ⇒ 1]

∣∣

≤
qe∑

i=1

(∣∣Pr[G3,i ⇒ 1]− Pr[G3,i−1 ⇒ 1]
∣∣
)

≤∑qe
i=1 Adveavl2

RESM(p, qẼ +Q,O(t+ pσmtl),mi)

which is the claim in Eq. (30).
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