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Executive Summary

The Romulus Modes. Romulus is a submission to the NIST lightweight com-
petition, currently in the final round [GIK`19]. Romulus consists of three au-
thenticated encryption (AE) modes and one hash function, all using the Skinny
tweakable block cipher as the underlying primitive. In particular, the AE modes
include a nonce-based AE mode Romulus-N, a nonce misuse-resistant AE mode
Romulus-M, and a leakage-resilient AE mode Romulus-T.

The goal of this report is to evaluate the security of Romulus-N and Romulus-M.
Their security proof has already been given in [IKMP20], so we will revisit and
verify their security claims. In [IKMP20], the authors proposed three versions for
each of Romulus-N and Romulus-M, while Romulus-N and Romulus-M at the final
round share the exact same specifications as Romulus-N1 and Romulus-M1 (from
version 1.2 and [IKMP20]), respectively, except that the number of Skinny-128/384
rounds is reduced from 56 to 40.

The Scope of Evaluation. Our evaluation is focused on the provable security
of Romulus-N and Romulus-M, where we assume the security of the underlying
tweakable block cipher in the standard model. More precisely, when a key is
chosen uniformly at random and kept secret, the keyed tweakable block cipher is
assumed to behave like an independent random permutation for each tweak. Such
an ideal counterpart of a tweakable block cipher is called a tweakable uniform
random permutation.

The security of Romulus-N and Romulus-M is proved in the nonce-respecting
model in terms of privacy and authenticity. For Romulus-M, we will also analyze
its nonce-misuse resistance. In this case, its security bound depends on the
maximum number of repetitions of a nonce.

Summary of Security Evaluation. In this evaluation, we confirm the provable
security of Romulus-N and Romulus-M as given in the NIST submission version
1.3. Specifically, when the underlying n-bit tweakable cipher is modeled as a
tweakable uniform random permutation, we confirm the following statements.

– Romulus-N is perfectly secure in terms of privacy as long as nonces are not
repeated.

– Romulus-N is unforgeable up to 2τ verification(decryption) queries as long as
nonces are not repeated, where the tag is truncated to τ bits.

– Romulus-M is perfectly secure in terms of privacy as long as nonces are not
repeated. The privacy of Romulus-M is also guaranteed when a nonce is
repeated at most r times, and when rσe is small in front of 2n, where σe
denotes the total number of effective blocks in encryption.

– Romulus-M is unforgeable up to 2n verification(decryption) queries as long as
nonces are not repeated. The authenticity of Romulus-M is also guaranteed
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when a nonce is repeated at most r times, and when rqe and rqd are all small
in front of 2n, where qe and qd denote the number of encryption queries and
the number of verification(decryption) queries, respectively.

In the original proof, the output of each block cipher evaluation is viewed
as a random variable, and it is lazily sampled since each tweak defines an
independent random permutation. In this way, the probability of certain bad
events (such as collisions in chaining variables) which breaks the randomness of
the ciphertexts and the tags is carefully upper bounded. On the other hand, our
proof is mainly based on the H-coefficient technique, leading to slight improvement
in the coefficients of the security bounds.

Conclusion. In this evaluation, we proved the security of Romulus-N and
Romulus-M; the best attack on any of these modes implies a chosen-plaintext
attack (CPA) in the single-key setting against the underlying tweakable block
cipher. So unless the tweakable block cipher is broken by CPA adversaries in
the single-key setting, Romulus indeed maintains the claimed n-bit security. To
evaluate the security of Romulus, with the standard model proof, we can focus
on the security evaluation of the underlying primitive. The provable security of
Romulus-N and Romulus-M is a clear advantage over any scheme with security
proofs in non-standard models.
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1 Preliminaries

1.1 Notation

Let t0, 1u˚ be the set of all finite bit strings, including the empty string ε. For X P

t0, 1u˚, let |X| denote its bit length. Here |ε| “ 0. For an integer n ě 0, let t0, 1un

be the set of n-bit strings, and let t0, 1uďn “
Ť

i“0,...,nt0, 1u
i, where t0, 1u0 “ tεu.

Let JnK “ t1, . . . , nu and JnK0 “ t0, 1, . . . , n ´ 1u. Let |X|n “ maxt1, r|X|{nsu.
For positive integers i and j, let piqj denote i ¨ pi´ 1q ¨ ¨ ¨ ¨ ¨ pi´ pj ´ 1qq.

For two bit strings X and Y , X }Y is their concatenation. We also write
this as XY if it is clear from the context. Let 0i (1i) be the string of i zero
bits (i one bits), and for instance we write 10i for 1 } 0i. When |X| “ |Y |, the
bitwise XOR of X and Y is denoted by X ‘ Y . For a binary string X such
that |X| ě x, we write lmtxpXq (resp. rmtxpXq) to denote the leftmost (resp.
rightmost) x bits of X. By convention, for an integer X P J2cK0, we assume a

standard integer-to-binary encoding, i.e., an integer
řc´1
i“0 xi2

i for xi P t0, 1u is
encoded to pxc´1 . . . x1x0q P t0, 1u

c. For example, X ‘ 1 denotes X ‘ 0c´11.

Galois Field. An element a in the Galois field GFp2nq will be interchangeably
represented as an n-bit string an´1 . . . a1a0, a formal polynomial an´1x

n´1 `

¨ ¨ ¨ ` a1x` a0, or an integer
řn´1
i“0 ai2

i.

Matrix. Let G be an nˆn binary matrix defined over GFp2q. For X P t0, 1un, let
GpXq denote the matrix-vector multiplication over GFp2q, where X is interpreted
as a column vector. We may write G ¨X instead of GpXq. Let I denote the nˆn
identity matrix over GFp2q.

1.2 Security Notions

Tweakable Block Cipher. A tweakable block cipher (TBC) is a keyed function
rE : K ˆ T ˆM Ñ M, where K is the key space, T is the tweak space, and
M “ t0, 1un is the message space, such that for any pK,T q P K ˆ T , rEpK,T, ¨q

is a permutation over M. We interchangeably write rEpK,T,Mq or rEKpT,Mq or
rETKpMq.

The security of rE is defined by the indistinguishability from an ideal object,
called a tweakable uniform random permutation (TURP), denoted by rP; it is a
set of independent uniform random permutations (URPs) over M indexed by
tweak T P T . We will consider an adversary A making only chosen-plaintext,
chosen-tweak queries to rE (since the encryption and the decryption algorithms
of Romulus use only forward queries to the underlying tweakable block cipher).

The advantage of A breaking the security of rE is defined as

Advtprp

rE
pAq def

“

ˇ

ˇ

ˇ
Pr

”

K
$
Ð K : A rEKp¨,¨q ñ 1

ı

´ Pr
”

ArPp¨,¨q ñ 1
ı
ˇ

ˇ

ˇ
.
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A pq, tq-adversary against the security of rE is an algorithm making at most q
encryption queries and running in time at most t. We define Advtprp

rE
pq, tq as the

maximum of Advtprp

rE
pAq over all pq, tq-adversaries against rE.

Nonce-based AE Scheme. Given four non-empty sets K, N , A and M (all being
subsets of t0, 1u˚) and tag length τ , a nonce-based authenticated encryption (AE)
scheme is a tuple

Π “ pK,N ,A,M, Π.Enc, Π.Decq,

where Π.Enc and Π.Dec are called the encryption and decryption algorithms of
Π, respectively. The encryption algorithm Π.Enc takes as input a key K P K, a
nonce N P N , an associated data A P A, and a message M PM, and outputs a
ciphertext C P t0, 1u˚ and a tag T P t0, 1uτ such that |C| “ |M |. The decryption
algorithm Π.Dec takes as input a tuple pK,N,A,C, T q P KˆN ˆAˆ t0, 1u˚ ˆ
t0, 1uτ , and outputs either a message M PM or a special symbol K. We require
that

Π.DecpK,N,A,Π.EncpK,N,A,Mqq “M

for any tuple pK,N,A,Mq P K ˆN ˆAˆM. We will write Π.EncKpN,A,Mq
and Π.DecKpN,A,C, T q to denote Π.EncpK,N,A,Mq and Π.DecpK,N,A,C, T q,
respectively.

The privacy of Π is measured by the indistinguishability of the encryption
oracle Π.EncK from Rand, where Rand returns an independent random string of
length |M | ` τ on any (distinct) input pN,Mq. The advantage of A breaking the
privacy of Π is defined as

Adv
priv
Π pAq def

“

ˇ

ˇ

ˇ
Pr

”

K
$
Ð K : AΠ.EncK ñ 1

ı

´ Pr
“

ARand ñ 1
‰

ˇ

ˇ

ˇ
.

When Π is based on a smaller primitive, say a tweakable block cipher, an
pr, q, σ, tq-adversary against the privacy of Π is an algorithm making at most q
encryption queries with at most r repetitions of a nonce, and running in time
at most t, where the total number of effective blocks (i.e., the total number of
tweakable block cipher calls) is at most σ. We define Advpriv

Π pr, q, σ, tq as the

maximum of Advpriv
Π pAq over all pr, q, σ, tq-adversaries A against the privacy of

Π.

The authenticity of Π is measured by the adversarial advantage of finding any
successful forgery via queries to Π.EncK and Π.DecK . Precisely, the advantage
of A breaking the authenticity of Π is defined as

Advauth
Π pAq def

“ Pr
”

K
$
Ð K : AΠ.EncK ,Π.DecK forges

ı

,

where A forges if it receives a value M 1 ‰ K from Π.DecK . Here, to prevent
trivial wins, if pC, T q Ð Π.EncKpN,A,Mq is obtained earlier, A cannot query
pN,A,C, T q to Π.DecK . An pr, qe, qd, σe, σd, tq-adversary against the authenticity
of Π is an algorithm making at most qe encryption queries with at most r
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repetitions of a nonce and at most qd decryption queries, and running in time at
most t, where the total number of effective blocks in encryption (resp. decryption
queries) is at most σe (resp. σd). We define Advauth

Π pr, qe, qd, σe, σd, tq as the
maximum of Advauth

Π pAq over all pr, qe, qd, σe, σd, tq-adversaries A against the
authenticity of Π.

Nonce-respecting vs. Nonce-misuse Adversaries. When r “ 1, we say that A
(against either the privacy or the authenticity of Π) is nonce-respecting, otherwise
A is said nonce-misusing. However, the adversary is allowed to repeat nonces
when it makes decryption queries. When we consider only nonce-respecting
adversaries, we will simply drop the parameter r, writing Advpriv

Π pq, σ, tq and
Advauth

Π pqe, qd, σe, σd, tq. Furthermore, when we consider information theoretic
security, we will drop the parameter t.

MAC-Security Against a Single Verification Query. When we analyze the au-
thenticity of a nonce-based AE schem Π, we can assume qd “ 1, and use the
following lemma.

Lemma 1. If there exists a function δ of qe, σ, t, and potentially r, such that,
for any pprq, qe, 1, σ, tq-adversary A against Π,

Advauth
Π pAq ď δpprq, qe, σ, tq,

then, for any pprq, qe, qd, σ, tq-adversary A1 against Π, one has

Advauth
Π pA1q ď qd ¨ δpprq, qe, σ, tq.

Proof. Given a pprq, qe, qd, σ, tq-adversary A1 against Π, one can use it as a
subroutine to construct a pprq, qe, 1, σ, tq-adversary A against Π as follows:

– A chooses j uniformly at random from t1, . . . , qdu;

– A faithfully relays each encryption query made by A1 to its encryption oracle;
if A receives pC, T q from the oracle as the answer to this query, then A sends
pC, T q to A1;

– A relays A1’s j-th decryption query pN 1,M 1, C 1, T 1q to its decryption oracle,
and for any other decryption query, A sends K to A1.

Then it is easy to see that

Advauth
Π pAq ě 1

qd
¨Advauth

Π pA1q. [\

2 Specification of the Romulus Modes

For the description of Romulus-N and Romulus-M, we will use the following
parameters: n for nonce length and message block length, k for key length, d
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for counter bit length, and τ for tag length, where n is a multiple of 8. While
we fix τ “ n, a tag forRomulus-N can be truncated if needed, at the cost of
decreased security against forgery. As actual values for these parameters, the
Romulus modes use n “ k “ 128 and d “ 56. Both of Romulus-N and Romulus-M
are based on a tweakable block cipher and a state update function ρ.

Padding. For Romulus-N and Romulus-M, AD blocks and message blocks are
both of length multiples of 8. For X P t0, 1uďl of length multiple of 8 (i.e, byte
string), let

padlpXq “

#

X if |X| “ l,

X } 0l´|X|´8 } len8pXq, if 0 ď |X| ă l,

where len8pXq denotes the one-byte encoding of the byte-length of X, assuming
that l ă 256 bytes. Here, padlpεq “ 0l. When l “ 128 (as used for Romulus-N
and Romulus-M), len8pXq has 16 variations (i.e., byte length 0 to 15), and it is
encoded to the last 4 bits of len8pXq (for example, len8p11q “ 00001011).

Parsing. For X P t0, 1u˚, let pXr1s, . . . , Xrxsq
n
Ð X be the parsing of X into n-bit

blocks. Here, Xr1s }Xr2s } . . . }Xrxs “ X and x “ |X|n. Note that |Xrxs| ă n
if |X| is not a multiple of n. When X “ ε, we have Xr1s

n
Ð X and Xr1s “ ε.

Note in particular that |ε|n “ 1.

Tweakable Block Cipher. The Romulus modes are based on a tweakable block
cipher

rE : K ˆ T ˆMÑM

where K “ t0, 1uk, M “ t0, 1un, and T “ T ˆ B ˆ D. Here, T “ t0, 1un,
D “ J2d ´ 1K0, and B “ J256K0. T will be used to process nonces or AD blocks,
D will be used for counters, while B is for domain separation. For a counter value
i P D, we will write i to denote the i-th clocking of the counter as a part of the
tweak (e.g. see Figure 1).

State Update Function. For an nˆ n binary matrix A and for i “ 0, . . . , n, let
Apiq denote an nˆ n matrix that is equal to A except the pi` 1q-th to n-th rows,
which are set to all zero. So Ap0q is the zero matrix and Apnq “ A. When n is a
multiple of 8, A is called sound if A is regular (full-rank) and Apiq ` I is regular
for all i “ 8, 16, . . . , n.

The state update function ρ is defined using the following sound matrix.

G “

¨

˚

˚

˚

˚

˚

˝

Gs 0 0 . . . 0
0 Gs 0 . . . 0
...

. . .
...

0 . . . 0 Gs 0
0 . . . 0 0 Gs

˛

‹

‹

‹

‹

‹

‚

,
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where 0 represents the 8ˆ 8 zero matrix, and

Gs “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

It is easy to see that G is sound since Gs is regular.

The state update function ρ : t0, 1un ˆ t0, 1un Ñ t0, 1un ˆ t0, 1un is defined
as

ρpS,Mq “ pS1, Cq,

where C “ M ‘GpSq and S1 “ S ‘M . As the inverse of ρ with respect to its
second parameter, ρ´1 : t0, 1un ˆ t0, 1un Ñ t0, 1un ˆ t0, 1un is defined as

ρ´1pS,Cq “ pS1,Mq,

where M “ C ‘GpSq and S1 “ S ‘M . So, for any pS,Mq P t0, 1un ˆ t0, 1un, if
ρpS,Mq “ pS1, Cq, then ρ´1pS,Cq “ pS1,Mq.

2.1 Romulus-N

The specification of the NAE mode Romulus-N is shown in Figure 1, while Figure 3
gives a more graphical representation. To encrypt pN,A,Mq under key K, in
Romulus-N, we first hash A “ pAr1s, . . . , Arasq into S in line 7 in Figure 1, where
Ar1s, Ar3s, Ar5s, . . . are injected into the state with ρ, and Ar2s, Ar4s, Ar6s, . . .

are processed with the TBC. We then use nonce N to compute S “ rE
pN,wA,aq
K pSq,

that could be seen as the nonce-dependent MAC value of A. Then M is processed
with ρ to generate C, where we keep using the TBC that takes N as a part of

the input. The tag T is generated as T “ Gp rE
pN,wM ,mq
K pSqq from the final state

S after the process of M .

2.2 Romulus-M

The specification of the MRAE mode Romulus-M is shown in Figure 2; we first
hash both A and M into the state S in line 19 or 21, and then the tag T is

computed as T “ Gp rE
pN,w,a`mq
K pSqq in line 23 (or 24). The tag generation follows

the same process as Romulus-N to hash both A and M , and the encryption part
of M is similar to Romulus-N. Figure 4 gives a more graphical representation of
Romulus-M.
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Algorithm Romulus-N.EncKpN,A,Mq

1. S Ð 0n

2. pAr1s, . . . , Arasq
n
Ð A

3. if |Aras| ă n then wA Ð 26 else 24
4. Aras Ð padnpArasq
5. for i “ 1 to ta{2u

6. pS, ηq Ð ρpS,Ar2i´ 1sq

7. S Ð rE
pAr2is,8,2i´1q
K pSq

8. end for
9. if a mod 2 “ 0 then V Ð 0n else Aras

10. pS, ηq Ð ρpS, V q

11. S Ð rE
pN,wA,aq
K pSq

12. pM r1s, . . . ,M rmsq
n
ÐM

13. if |M rms| ă n then wM Ð 21 else 20
14. for i “ 1 to m´ 1
15. pS,Crisq Ð ρpS,M risq

16. S Ð rE
pN,4,iq
K pSq

17. end for
18. M 1

rms Ð padnpM rmsq
19. pS,C 1rmsq Ð ρpS,M 1

rmsq
20. Crms Ð lmt|Mrms|pC

1
rmsq

21. S Ð rE
pN,wM ,mq
K pSq

22. pη, T q Ð ρpS, 0n
q

23. C Ð Cr1s } . . . }Crm´ 1s }Crms
24. return pC, T q

Algorithm Romulus-N.DecKpN,A,C, T q

1. S Ð 0n

2. pAr1s, . . . , Arasq
n
Ð A

3. if |Aras| ă n then wA Ð 26 else 24
4. Aras Ð padnpArasq
5. for i “ 1 to ta{2u

6. pS, ηq Ð ρpS,Ar2i´ 1sq

7. S Ð rE
pAr2is,8,2i´1q
K pSq

8. end for
9. if a mod 2 “ 0 then V Ð 0n else Aras

10. pS, ηq Ð ρpS, V q

11. S Ð rE
pN,wA,aq
K pSq

12. pCr1s, . . . , Crmsq
n
Ð C

13. if |Crms| ă n then wC Ð 21 else 20
14. for i “ 1 to m´ 1
15. pS,M risq Ð ρ´1

pS,Crisq

16. S Ð rE
pN,4,iq
K pSq

17. end for
18. rS Ð p0|Crms| } rmtn´|Crms|pGpSqqq

19. C 1rms Ð padnpCrmsq ‘
rS

20. pS,M 1
rmsq Ð ρ´1

pS,C 1rmsq
21. M rms Ð lmt|Crms|pM

1
rmsq

22. S Ð rE
pN,wC ,mq
K pSq

23. pη, T˚q Ð ρpS, 0n
q

24. M ÐM r1s } . . . }M rm´ 1s }M rms
25. if T˚ “ T then return M else K

Algorithm ρpS,Mq

1. C ÐM ‘GpSq
2. S1 Ð S ‘M
3. return pS1, Cq

Algorithm ρ´1
pS,Cq

1. M Ð C ‘GpSq
2. S1 Ð S ‘M
3. return pS1,Mq

Fig. 1: The Romulus-N nonce-based AE mode. Lines of [if (statement) then
X Ð x else x1] are shorthand for [if (statement) then X Ð x else X Ð x1].
The dummy variable η is always discarded.

3 Security of Romulus-N in the Nonce-respecting Setting

In this section, we prove the security of Romulus-N against nonce-respecting
adversaries. Let Romulus‹-N denote the AE mode obtained from Romulus-N by
replacing the underlying keyed tweakable block cipher rE by a truly random
tweakable permutation

rP : T ˆMÑM
with T “ T ˆ B ˆD. So one can view rP itself as the secret key of Romulus‹-N.
From now on, we will focus on the security of Romulus‹-N.

For a fixed parameter τ such that 1 ď τ ď n´ 1, let

truncτ : t0, 1un Ñ t0, 1uτ

be a function that takes τ bits of the input in any way (e.g., the leftmost τ bits
of an n-bit input). Let

ρ´1
C pSq

def
“ S ‘ padnpCq ‘ lmt|C|pGpSqq } 0n´|C|
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Algorithm Romulus-M.EncKpN,A,Mq

1. S Ð 0n

2. pXr1s, . . . , Xrasq
n
Ð A

3. pXra` 1s, . . . , Xra`msq
n
ÐM

4. z Ð |Xra`ms|
5. w Ð 48
6. if |Xras| ă n then w Ð w ‘ 2
7. if |Xra`ms| ă n then w Ð w ‘ 1
8. if a mod 2 “ 0 then w Ð w ‘ 8
9. if m mod 2 “ 0 then w Ð w ‘ 4

10. Xras Ð padnpXrasq
11. Xra`ms Ð padnpXra`msq
12. xÐ 40
13. for i “ 1 to tpa`mq{2u

14. pS, ηq Ð ρpS,Xr2i´ 1sq
15. if i “ ta{2u` 1 then xÐ x‘ 4

16. S Ð rE
pXr2is,x,2i´1q
K pSq

17. end for
18. if a mod 2 “ m mod 2 then
19. pS, ηq Ð ρpS, 0n

q

20. else
21. pS, ηq Ð ρpS,Xra`msq

22. S Ð rE
pN,w,a`mq
K pSq

23. pη, T q Ð ρpS, 0n
q

24. if M “ ε then return pε, T q
25. S Ð T
26. for i “ 1 to m
27. S Ð rE

pN,36,i´1q
K pSq

28. pS,Crisq Ð ρpS,Xra` isq
29. end for
30. Crms Ð lmtzpCrmsq
31. C Ð Cr1s } . . . }Crm´ 1s }Crms
32. return pC, T q

Algorithm Romulus-M.DecKpN,A,C, T q

1. if C “ ε then M Ð ε
2. else
3. S Ð T
4. pCr1s, . . . , Crmsq

n
Ð C

5. z Ð |Crms|
6. Crms Ð padnpCrmsq
7. for i “ 1 to m
8. S Ð rE

pN,36,i´1q
K pSq

9. pS,M risq Ð ρ´1
pS,Crisq

10. end for
11. M rms Ð lmtzpM rmsq
12. M ÐM r1s } . . . }M rm´ 1s }M rms
13. S Ð 0n

14. pXr1s, . . . , Xrasq
n
Ð A

15. pXra` 1s, . . . , Xra`msq
n
ÐM

16. w Ð 48
17. if |Xras| ă n then w Ð w ‘ 2
18. if |Xra`ms| ă n then w Ð w ‘ 1
19. if a mod 2 “ 0 then w Ð w ‘ 8
20. if m mod 2 “ 0 then w Ð w ‘ 4
21. Xras Ð padnpXrasq
22. Xra`ms Ð padnpXra`msq
23. xÐ 40
24. for i “ 1 to tpa`mq{2u

25. pS, ηq Ð ρpS,Xr2i´ 1sq
26. if i “ ta{2u` 1 then xÐ x‘ 4

27. S Ð rE
pXr2is,x,2i´1q
K pSq

28. end for
29. if a mod 2 “ m mod 2 then
30. pS, ηq Ð ρpS, 0n

q

31. else
32. pS, ηq Ð ρpS,Xra`msq

33. S Ð rE
pN,w,a`mq
K pSq

34. pη, T˚q Ð ρpS, 0n
q

35. if T˚ “ T then return M else K

Algorithm ρpS,Mq

1. C ÐM ‘GpSq
2. S1 Ð S ‘M
3. return pS1, Cq

Algorithm ρ´1
pS,Cq

1. M Ð C ‘GpSq
2. S1 Ð S ‘M
3. return pS1,Mq

Fig. 2: The Romulus-M misuse-resistant AE mode. The dummy variable η is
always discarded. Note that in the case of empty message, no encryption call has
to be performed in the encryption part.

for C P t0, 1uďn. In particular, ρ´1
C pSq “ S ‘ C ‘GpSq for C P t0, 1un. Since G

is sound, ρ´1
C is a permutation over t0, 1un for any C P t0, 1uďn. We also define

ρCpSq
def
“ S ‘ C

for C P t0, 1un.
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Ẽ

4,
2

K

M
[2

]
N

C
[2

]

ρ
Ẽ
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3.1 Proof of Privacy

The i-th ciphertext block of an encryption query with nonce N is defined as
Cris “M ris‘GpSq with the last block truncated if needed, and the tag is defined

as T “ GpSq for some S, where G is regular and S “ rP
N,x,y

pS1q for some x, y
and S1. If the adversary is nonce-respecting, then tweaks px, y,Nq are all distinct

throughout the game. If rP is evaluated by lazy sampling, then ciphertext blocks
Cris and tag T will be all uniform and independent at random (no matter how
many queries are made).1 Therefore, for any adversary A against the privacy of
Romulus‹-N, we have

Advpriv
Romulus‹-NpAq “ 0.

3.2 Proof of Authenticity

We will assume that qd “ 1, and then use Lemma 1. Furthermore, without loss
of generality, we can assume that the single verification query is made at the
end of the game (after all the encryption queries have been made). Given a
p1, qe, 1, σ, tq-adversary A against the authenticity of an AE mode Romulus‹-N,
we can slightly modify it to obtain a p1, qe, 1, σ, tq-adversary B distinguishing the
real world pRomulus‹-N.Enc

rP,Romulus‹-N.Dec
rPq and the ideal world pRand,Rejq

such that

Advauth
Romulus‹-NpAq ď

ˇ

ˇ

ˇ
Pr

”

BRomulus‹-N.Enc
rP,Romulus‹-N.Dec

rP ñ 1
ı

´ Pr
“

BRand,Rej ñ 1
‰

ˇ

ˇ

ˇ
,

where Rand returns an independent random string of length |M | ` τ on any
(distinct) input pN,Mq and Rej returns K for the (single) decryption query.
In order to upper bound B’s distinguishing advantage, we can use Patarin’s
coefficient-H technique [Pat08]. At the end of the game, B will have sets of
query-response pairs

#

τe “ ppN1, A1,M1, C1, T1q, . . . , pNqe , Aqe ,Mqe , Cqe , Tqeqq,

τv “ pN
1, A1,M 1, T 1, b1q,

where b1 P tJ,Ku, and it holds that b1 “ K in the ideal world. In the real world, B
is given additional information rP

p¨,8,¨q
p¨q (used to encrypt associate data) for free.

In the ideal world, B is given a uniform tweakable permutation rP
p¨,8,¨q

p¨q which is

independent of Rand and Rej. Overall, B obtains a transcript τ “ pτe, τv, rP
p¨,8,¨q

q.

A transcript τ is called attainable if the probability to obtain the transcript
in the ideal world is non-zero, and let Θ be the set of all attainable transcripts.
We let Θideal and Θreal denote the probability distributions of the transcript in
the ideal world and in the real world, respectively. Based on these notations, we
restate the Coefficient-H technique [Pat08] as follows.

1 There will be an inherent limitation on the number of possible queries due to the
tweak space and the maximum input length.
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Lemma 2. For a distinguisher B, let Θ “ GoodTYBadT be a partition of the set
of all attainable transcripts. If there exist ε1 and ε2 such that for any τ P GoodT,

PrrΘreal “ τ s

PrrΘideal “ τ s
ě 1´ ε1,

and PrrΘideal P BadTs ď ε2, then the distinguishing advantage of B is bounded
by ε1 ` ε2.

Since rP
p¨,8,¨q

is public, one can determine the input to rP
pNi,wAi ,aiq (resp.

rP
pN 1,wA1 ,a

1
q
), denoted Xi (resp. X 1), where ai (resp. a1) denotes the number of

AD blocks for the i-th encryption query (resp. the unique decryption query).

We are now ready to define a bad transcript. A transcript τ “ pτe, τv, rP
p¨,8,¨q

q is
defined to be bad if

pXi, Ni, wAi , ai, Ciq “ pX
1, N 1, wA1 , a

1, C 1q

for some i “ 1, . . . , qe. Otherwise τ is called good. We first show that, in the ideal
world, the probability of obtaining a bad transcript is small.

Lemma 3. PrrΘideal P BadTs ď
2

2n
.

Proof. Since B is nonce-respecting, there is a unique index i such that

pNi, wAi , ai, Ciq “ pN
1, wA1 , a

1, C 1q.

Furthermore, we have Ai ‰ A1 since Ci “ C 1 and B does not make a redundant
query. Suppose that a1 is even. Note that

Xi “ rP
ppadpAira

1
sq,8,a1´1q

˝ ρAira1´1s ˝ ¨ ¨ ¨ ˝
rP
pAir2s,8,1q

˝ ρAir1sp0
nq,

X 1 “ rP
ppadpA1ra1sq,8,a1´1q

˝ ρA1ra1´1s ˝ ¨ ¨ ¨ ˝
rP
pA1r2s,8,1q

˝ ρA1r1sp0
nq.

Let k denote the last index where the AD blocks of Ai and A1 are different. So
Airks ‰ A1rks while Airjs “ A1rjs for j “ k ` 1, . . . , a1p“ aiq. In order for the
collision Xi “ X 1 to happen, it should be the case that k ą 1, and one of the
following two cases should hold (according to the parity of k).

Case 1: When k is even,

rP
pAirks,8,k´1q

pSiq “ rP
pA1rks,8,k´1q

pS1q

for some (not necessarily distinct) Si and S1. (When k “ a1, Airks and A1rks
should be replaced by padpAirksq and padpA1rksq, respectively.)

Case 2: When k is odd,

rP
pAirk´1s,8,k´2q

pSiq ‘ rP
pA1rk´1s,8,k´2q

pS1q “ Airks ‘A
1rks p‰ 0nq

for some (not necessarily distinct) Si and S1.
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The first case happens with probability 1
2n , while the second case happens with

probability 1
2n´1 over the randomness of rP in the ideal world. By applying a

similar argument to the case that a1 is odd, we have

PrrΘideal P BadTs ď
1

2n ´ 1
ď

2

2n
. [\

We next show that the ratio of the interpolation probabilities is close to one.

Lemma 4.
PrrΘreal “ τ s

PrrΘideal “ τ s
ě 1´

2

2τ
.

Proof. We fix a good transcript τ “ pτe, τv, rP
p¨,8,¨q

q. An important observation is

that the probabilities of obtaining pτe, rP
p¨,8,¨q

q are the same in the ideal and the

real worlds; every tweak of rP used in the message encryption part, say pNi, ‹, jq

with ‹ ‰ 8, is fresh, and one can evaluate rP
pNi,‹,jq

by lazy sampling. In this
way, all the ciphertext blocks and tags will be chosen independently at random.
Now we will upper bound the probability that b1 “ J in the real world given

pτe, rP
p¨,8,¨q

q.

We write pC 1r1s, . . . , C 1rm1sq
n
Ð C 1 for some m1, and for j “ 1, . . . ,m1, let

Dj
def
“ ρ´1

C1rm1s ˝ ¨ ¨ ¨ ˝
rP
pN 1,4,j`1q

˝ ρ´1
C1rj`1s ˝

rP
pN 1,4,jq

˝ ρ´1
C1rjs.

We need to upper bound the probability that

truncτ ˝G ˝ rP
pN 1,wC1 ,m

1
q
˝ D1 ˝ rP

pN 1,wA1 ,a
1
q
pX 1q “ T 1.

We distinguish two cases as follows.

Case 1: pN 1, X 1, wA1 , a
1q ‰ pNi, Xi, wAi , ai, q for all i “ 1, . . . , qe. Once we fix

all the evaluations of rP
pN 1,4,¨q

(appearing in D1) and rP
pN 1,wC1 ,m

1
q
, the number

of preimages of T 1 under truncτ ˝ G ˝ rP
pN 1,wC1 ,m

1
q
˝ D1 is 2n´τ since G ˝

rP
pN 1,wC1 ,m

1
q
˝ D1 is a permutation. Since rP

pN 1,wA1 ,a
1
q
p¨q has been evaluated

at most once during the encryption phase, the probability that truncτ ˝G ˝

rP
pN 1,wC1 ,m

1
q
˝ D1 ˝ rP

pN 1,wA1 ,a
1
q
pX 1q “ T 1 is upper bounded by 2n´τ

2n´1 ď
2
2τ .

Case 2: pN 1, X 1, wA1 , a
1q “ pNi, Xi, wAi , ai, q and Ci ‰ C for some 1 ď i ď

qe (which is unique).

Case 2-1: pwC1 , c
1q “ pwCi , ciq. Let k denote the first index where the

ciphertext blocks of Ci and C 1 are different. So Cirks ‰ C 1rks while

Cirjs “ C 1rjs for j “ 1, . . . , k ´ 1. Then two inputs to rP
pN 1,4,kq

, say Si
and S1, are different for the i-th query and the decryption query. Once
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we fix rP
pN 1,4,jq

p¨q for j ě k ` 1, then the number of preimages of T 1

under truncτ ˝G ˝ rP
pN 1,wC1 ,m

1
q
˝Dk`1 is 2n´τ . Over the random sampling

of rP
pN 1,4,kq

pS1q, the probability that it becomes one of the preimages is

upper bounded by 2n´τ

2n´1 ď
2
2τ .

Case 2-2: pwC1 , c
1q ‰ pwCi , ciq. Once we fix all the evaluations of rP

pN 1,4,¨q

and rP
pN 1,wA1 ,a

1
q
, we can fix

X2
def
“ D1 ˝ rP

pN 1,wA1 ,a
1
q
pX 1q,

while the number of preimages of T 1 under truncτ ˝ G is 2n´τ . Since

rP
pN 1,wC1 ,c

1
q
p¨q has never been evaluated before, the probability that

truncτ ˝G ˝ rP
pN 1,wC1 ,m

1
q
pX2q “ T 1 is upper bounded by 2n´τ

2n ď 1
2τ .

Therefore, the probability that b1 “ K in the real world is lower bounded by
1´ 2

2τ , which completes the proof. [\

By Lemma 1, 2, 3 and 4, we have

Advauth
Romulus‹-Npqe, qd, σe, σd, tq ď

2qd
2n

`
2qd
2τ

.

3.3 Summary

Any pqe, σe, tq-adversary A against the privacy of Romulus-N can be viewed as
an adversary against Romulus‹-N such that

Advpriv
Romulus-NpAq ď Advpriv

Romulus‹-NpAq `Advtprp

rE
pqe, t`Opσeqq.

Similarly, any pqe, qd, σe, σd, tq-adversary A against the authenticity of Romulus-N
can be viewed as an adversary against Romulus‹-N such that

Advauth
Romulus-NpAq ď Advauth

Romulus‹-NpAq `Adv
tprp

rE
pqe ` qd, t`Opσeq `Opσdqq.

With this observation, we obtain the following theorem.

Theorem 1. For Romulus-N, we have

Advpriv
Romulus-Npqe, σe, tq ď Advtprp

rE
pqe, t`Opσeqq,

Advauth
Romulus-Npqe, qd, σe, σd, tq ď Advtprp

rE
pqe ` qd, t`Opσeq `Opσdqq

`
2qd
2n

`
2qd
2τ

.
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4 Security of Romulus-M in the Nonce-respecting Setting

In this section, we prove the security of Romulus-M against nonce-respecting
adversaries. Let Romulus‹-M denote the AE mode obtained from Romulus-M by
replacing the underlying keyed tweakable block cipher rE by a truly random
tweakable permutation

rP : T ˆMÑM

with T “ T ˆ B ˆD. So one can view rP itself as the secret key of Romulus‹-M.
From now on, we will focus on the security of Romulus‹-M.

4.1 Proof of Privacy

The i-th ciphertext block of an encryption query with nonce N is defined as
Cris “M ris‘GpSq with the last block truncated if needed, and the tag is defined

as T “ GpSq for some S, where G is regular and S “ rP
N,x,y

pS1q for some x, y
and S1. If the adversary is nonce-respecting, then tweaks px, y,Nq are all distinct

throughout the game. If rP is evaluated by lazy sampling, then ciphertext blocks
Cris and tag T will be all uniform and independent at random. Therefore, for
any adversary A against the privacy of Romulus‹-M, we have

Advpriv
Romulus‹-MpAq “ 0.

4.2 Proof of Authenticity

We will assume that qd “ 1, and then use Lemma 1. We can also assume that the
single verification query is made at the end of the game after all the encryption
queries have been made. Furthermore, we will give A direct access to an oracle

rP
p¨,36,¨q

p¨q. So A can now compute Z “ rP
pN,36,iq

pXq for any pN, i,Xq of its choice.
This only increases the advantage of A.

We observe that for an encryption query pNi, Ai,Miq, A can compute Ci

from Ti and the oracle rP
p¨,36,¨q

p¨q, and that for a decryption query pN 1, A1, C 1, T 1q,

A can compute M 1 from T 1, C 1, and the oracle rP
p¨,36,¨q

p¨q. With this observation,
we modify the game as follows:

– For an encryption query pNi, Ai,Miq, A only receives Ti.

– Instead of making a decryption query pN 1, A1, C 1, T 1q, A makes a (single)
verification query of the form pN 1, A1,M 1, T 1q.

With this modification, we can focus on the analysis of the MAC part of
Romulus‹-M, denoted Romulus‹mac-M.

Given a pqe, 1, σe, σd, tq-adversary A against the authenticity of Romulus‹mac-M,
we can slightly modify it to obtain a pqe, 1, σe, σd, tq-adversary B distinguishing
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the real world pRomulus‹mac-M.EncrP,Romulus‹mac-M.DecrPq and the ideal world
pRand,Rejq such that

Advauth
Romulus‹mac-M

pAq

ď

ˇ

ˇ

ˇ
Pr

”

BRomulus‹mac-M.EncrP,Romulus‹mac-M.Dec
rP ñ 1

ı

´ Pr
“

BRand,Rej ñ 1
‰

ˇ

ˇ

ˇ
,

where Rand returns an independent random n-bit string on any (distinct) in-
put pN,Mq and Rej returns K for the (single) decryption query. In order to
upper bound B’s distinguishing advantage, we can use Patarin’s coefficient-H
technique [Pat08]. At the end of the game, B will have sets of query-response
pairs

#

τe “ ppN1, A1,M1, T1q, . . . , pNqe , Aqe ,Mqe , Tqeqq,

τv “ pN
1, A1,M 1, T 1, b1q,

where b1 P tJ,Ku, and it holds that b1 “ K in the ideal world. In the real world,

B is given additional information rP
p¨,40,¨q

p¨q and rP
p¨,44,¨q

p¨q for free at the end of
the game. In the ideal world, B is given two independent and uniform tweakable

permutations rP
p¨,40,¨q

p¨q and rP
p¨,44,¨q

p¨q, which are independent of Rand and Rej.
Overall, B obtains a transcript

τ “

ˆ

τe, τv, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨q

˙

.

A transcript τ is called attainable if the probability to obtain the transcript
in the ideal world is non-zero, and let Θ be the set of all attainable transcripts.
We let Θideal and Θreal denote the probability distributions of the transcript in
the ideal world and in the real world, respectively. Based on these notations, we
will use Lemma 2.

Since rP
p¨,40,¨q

p¨q and rP
p¨,44,¨q

p¨q are made public, one can determine the input

to rP
pNi,wi,ai`miq

(resp. rP
pN 1,w1,a1`m1q

), denoted Xi (resp. X 1), where ai (resp. a1)
denotes the number of AD blocks for the i-th encryption query (resp. the unique
decryption query) and mi (resp. m1) denotes the number of message blocks for
the i-th encryption query (resp. the unique decryption query). Then a transcript

τ “ pτe, τv, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨qq is defined to be bad if

pXi, Ni, wi, ai `miq “ pX
1, N 1, w1, a1 `m1q

for some i “ 1, . . . , qe. Otherwise τ is called good. We first show that, in the ideal
world, the probability of obtaining a bad transcript is small.

Lemma 5. PrrΘideal P BadTs ď
2

2n
.
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Proof. Since B is nonce-respecting, there is a unique index i such that

pNi, wi, ai `miq “ pN
1, w1, a1 `m1q.

By renaming the AD and the message blocks, let

W
def
“ pW r1s, . . . ,W ra1 `m1sq Ð pAir1s, . . . , padpAiraisq,Mir1s, . . . , padpMirmisqq,

W 1 def
“ pW 1r1s, . . . ,W 1ra1 `m1sq Ð pA1r1s, . . . , padpA1ra1sq,M 1r1s, . . . , padpM 1rm1sqq.

Since wi “ w1, we have
ai mod 2 “ a1 mod 2.

Suppose that ai and a1 are all even. We distinguish two cases.

Case 1: W “W 1. Assuming that B makes no redundant query, we have ai ‰ a1.
Let a “ maxtai, a

1u. Since a is even, it should be the case that

rP
pW ras,44,a´1q

pUq “ rP
pW 1

ras,40,a´1q
pV q

for some U and V , since otherwise one would have Xi ‰ X 1. This event

will happen with probability 1
2n (over the random choice of rP

p¨,40,¨q
p¨q and

rP
p¨,44,¨q

p¨q) since rP uses different tweaks.

Case 2: W ‰ W 1. Let k denote the last index where the blocks of W and W 1

are different.

Case 2-1: k ă maxtai, a
1u. Similarly to the analysis of Case 1, collision

Xi “ X 1 requires

rP
pW ra1s,44,a1´1q

pUq “ rP
pW 1

ra1s,40,a1´1q
pV q

for some U and V , and the probability of this event is 1
2n .

Case 2-2: k ě maxtai, a
1u. If k is even, then it should be the case that

rP
pW rks,44,k´1q

pUq “ rP
pW 1

rks,44,k´1q
pV q

for some U and V . This event will happen with probability 1
2n since rP

uses different tweaks. If k is odd, then it should be the case that

rP
pW rk´1s,r,k´2q

pUq ‘ rP
pW 1

rk´1s,s,k´2q
pV q “W rks ‘W 1rks ‰ 0n.

for some U , V and r, s P t40, 44u. This event will happen with probability
at most 1

2n´1 .

By applying a similar argument to the case that ai and a1 are all odd, we have

PrrΘideal P BadTs ď
1

2n ´ 1
ď

2

2n
. [\
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We next show that the ratio of the interpolation probabilities is close to one.

Lemma 6.
PrrΘreal “ τ s

PrrΘideal “ τ s
ě 1´

2

2n
.

Proof. We fix a good transcript τ “ pτe, τv, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨qq. An important

observation is that the probabilities of obtaining pτe, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨qq are

the same in the ideal and the real worlds; every tweak of rP used to generate a tag
Ti is fresh, and the tweakable permutation can be evaluated by lazy sampling.
In this way, all the tags will be chosen independently at random. Now we will
upper bound the conditional probability that b1 “ J in the real world given

pτe, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨qq.

Since τ is good, we have

pXi, Ni, wi, ai `miq ‰ pX
1, N 1, w1, a1 `m1q

for all i “ 1, . . . , qe. In particular, there exists at most one index i such that
pNi, wi, ai `miq “ pN

1, w1, a1 `m1q. Therefore, the probability that

rP
pN 1,w1,a1`m1q

pX 1q “ T 1

is upper bounded by 1
2n´1 ď

2
2n . Therefore, the probability that b1 “ K in the

real world is lower bounded by 1´ 2
2n , which completes the proof. [\

By Lemma 1, 2, 5 and 6, we have

Advauth
Romulus‹-Mpqe, qd, σe, σd, tq ď Advauth

Romulus‹mac-M
pAq ď 4qd

2n
.

4.3 Summary

Any pqe, σe, tq-adversary A against the privacy of Romulus-M can be viewed as
an adversary against Romulus‹-M such that

Advpriv
Romulus-MpAq ď Advpriv

Romulus‹-MpAq `Advtprp

rE
pqe, t`Opσeqq.

Similarly, any pqe, qd, σe, σd, tq-adversary A against the authenticity of Romulus-M
can be viewed as an adversary against Romulus‹-M such that

Advauth
Romulus-MpAq ď Advauth

Romulus‹-MpAq `Advtprp

rE
pqe ` qd, t`Opσeq `Opσdqq.

With this observation, we obtain the following theorem.

Theorem 2. For Romulus-M, we have

Advpriv
Romulus-Mpqe, σe, tq ď Advtprp

rE
pqe, t`Opσeqq,

Advauth
Romulus-Mpqe, qd, σe, σd, tq ď Advtprp

rE
pqe ` qd, t`Opσeq `Opσdqq

`
4qd
2n

.
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5 Security of Romulus-M in the Nonce-misuse Setting

In this section, we prove the security of Romulus-M against nonce-misusing
adversaries. Let Romulus‹-M denote the AE mode obtained from Romulus-M by
replacing the underlying keyed tweakable block cipher rE by a truly random
tweakable permutation (TURP)

rP : T ˆMÑM

with T “ T ˆ B ˆD. So one can view rP itself as the secret key of Romulus‹-M.
From now on, we will focus on the security of Romulus‹-M.

5.1 Proof of Privacy

Let A be an pr, qe, σ, tq-adversary against the privacy of Romulus‹-M. In order to
upper bound A’s distinguishing advantage, we will use Patarin’s coefficient-H
technique [Pat08]. At the end of the game, A will have a set of query-response
pairs

τe “ ppN1, A1,M1, T1q, . . . , pNqe , Aqe ,Mqe , Tqeqq.

In the real world, A is given additional information rP
p¨,40,¨q

p¨q and rP
p¨,44,¨q

p¨q for
free at the end of the game. In the ideal world, A is given two independent and

uniform tweakable permutations rP
p¨,40,¨q

p¨q and rP
p¨,44,¨q

p¨q, which are independent
of Rand. Overall, A obtains a transcript

τ “

ˆ

τe, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨q

˙

.

A transcript τ is called attainable if the probability to obtain the transcript
in the ideal world is non-zero, and let Θ be the set of all attainable transcripts.
We let Θideal and Θreal denote the probability distributions of the transcript in
the ideal world and in the real world, respectively. Based on these notations, we
will use Lemma 2.

Since rP
p¨,40,¨q

p¨q and rP
p¨,44,¨q

p¨q are made public, one can determine the input

to rP
pNi,wi,ai`miq

, denoted Xi, where ai denotes the number of AD blocks for the
i-th encryption query and mi denotes the number of message blocks for the i-th

encryption query. Then a transcript τ “ pτe, τv, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨qq is defined
to be bad if one of the following conditions holds.

1. BadT1 ô pXi, Ni, wi, ai `miq “ pXj , Nj , wj , aj `mjq for some i and j such
that 1 ď i ă j ď qe;

2. BadT2 ô pNi, Tiq “ pNj , Tjq for some i and j such that 1 ď i ă j ď qe;

3. BadT3 ô Ni “ Nj and G´1pMirks‘Cirksq‘Mirks “ G´1pMjrks‘Cjrksq‘
Mjrks for some k, i and j such that 1 ď k ď mintmi,mju and 1 ď i ă j ď qe.
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If τ is not bad, then it will be called good. We first show that, in the ideal world,
the probability of obtaining a bad transcript is small. Let

BadT
def
“ BadT1 Y BadT2 Y BadT3.

Then we have the following lemma.

Lemma 7. PrrΘideal P BadTs ď
3pr ´ 1qqe

2n
`
pr ´ 1qσ

2n
.

The proof is immediate from the following three lemmas.

Lemma 8. PrrΘideal P BadT1s ď
2pr ´ 1qqe

2n
.

Proof. Since B makes at most r queries with the same nonce, the number of
pairs pi, jq such that i ă j and

pNi, wi, ai `miq “ pNj , wj , aj `mjq

is at most pr ´ 1qqe. Once such a pair is fixed, let

Wi
def
“ pWir1s, . . . ,Wirai `misq Ð pAir1s, . . . , padpAiraisq,Mir1s, . . . , padpMirmisqq,

Wj
def
“ pWjr1s, . . . ,Wjraj `mjsq Ð pAjr1s, . . . , padpAjrajsq,Mjr1s, . . . , padpMjrmjsqq

by renaming the AD and the message blocks. Since wi “ wj , we have

ai mod 2 “ aj mod 2.

Suppose that ai and aj are all even. We distinguish two cases.

Case 1: Wi “Wj . Assuming that B makes no redundant query, we have ai ‰ aj .
Let a “ maxtai, aju. Since a is even, it should be the case that

rP
pW ras,44,a´1q

pUq “ rP
pW 1

ras,40,a´1q
pV q

for some U and V , since otherwise one would have Xi ‰ Xj . This event

will happen with probability 1
2n (over the random choice of rP

p¨,40,¨q
p¨q and

rP
p¨,44,¨q

p¨q) since rP uses different tweaks.

Case 2: Wi ‰Wj . Let k denote the last index where the blocks of Wi and Wj

are different.

Case 2-1: k ă maxtai, aju. Similarly to the analysis of Case 1, collision
Xi “ Xj requires

rP
pWirajs,44,aj´1q

pUq “ rP
pWjrajs,40,aj´1q

pV q

for some U and V , and the probability of this event is 1
2n .

23



Case 2-2: k ě maxtai, aju. If k is even, then it should be the case that

rP
pWirks,44,k´1q

pUq “ rP
pWjrks,44,k´1q

pV q

for some U and V . This event will happen with probability 1
2n since rP

uses different tweaks.

If k is odd, then it should be the case that

rP
pWirk´1s,r,k´2q

pUq ‘ rP
pWjrk´1s,s,k´2q

pV q “Wirks ‘Wjrks ‰ 0n.

for some U , V and r, s P t40, 44u. This event will happen with probability
at most 1

2n´1 .

By applying a similar argument to the case that ai and aj are all odd, we have

PrrΘideal P BadT1s ď
pr ´ 1qqe
2n ´ 1

ď
2pr ´ 1qqe

2n
. [\

Lemma 9. PrrΘideal P BadT2s ď
pr ´ 1qqe

2n
.

Proof. the number of pairs pi, jq such that i ă j and

pNi, wi, ai `miq “ pNj , wj , aj `mjq

is at most pr´ 1qqe. Once such a pair is fixed, the probability that Ti “ Tj is
1

2n
since Ti and Tj are independently at random in the ideal world. Therefore, we

have PrrΘideal P BadT2s ď
pr ´ 1qqe

2n
. [\

Lemma 10. PrrΘideal P BadT3s ď
pr ´ 1qσ

2n
.

Proof. The number of possible choices for pj, kq such that 1 ď j ď qe and 1 ď k ď
mj is σ. For each of such pairs, the number of indices i such that i ă j andNi “ Nj
is at most r´1. Once a triple pi, j, kq is fixed (satisfying the above properties), the

probability that G´1pMirks‘Cirksq‘Mirks “ G´1pMjrks‘Cjrksq‘Mjrks is
1

2n
since Cirks and Cjrks are independently at random in the ideal world (assuming

k ď mi). Therefore, we have PrrΘideal P BadT3s ď
pr ´ 1qσ

2n
. [\

Fix a good transcript τ “ pτe, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨qq. The probability of ob-

taining rP
p¨,40,¨q

p¨q and rP
p¨,44,¨q

p¨q are the same in both worlds. Now consider the
probability of obtaining τe in the real world. When w R t40, 44u, we will evalu-

ate rP
p¨,w,¨q

p¨q by lazy sampling. An important observation is that if τ is good,

then every evaluation of rP
pN,w,kq

pSq is fresh; it has not been determined by any

previous call to rP. More precisely,
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1. every tag T is determined by a fresh query to rP since pXi, Ni, wi, ai `miq

are all distinct;

2. every first ciphertext block Cir1s is determined by a fresh query to rP since
pNi, Tiq are all distinct;

3. for each k ą 1, every k-th ciphertext block Cirks is determined by a fresh

query to rP since otherwise we would have a collision

G´1pMirks ‘ Cirksq ‘Mirks “ G´1pMjrks ‘ Cjrksq ‘Mjrks

for some i and j such that 1 ď k ď mintmi,mju and 1 ď i ă j ď qe, which
is impossible if τ is good.

When every query to rP is fresh, its response is chosen uniformly at random from
the set of size at most 2n. So the probability of obtaining τ in the real world is
not smaller than the probability of obtaining τ in the ideal world. Therefore, we
have the following lemma.

Lemma 11.
PrrΘreal “ τ s

PrrΘideal “ τ s
ě 1.

By Lemma 2, 7 and 11, we have

Advpriv
Romulus‹-Mpr, qe, σ, tq ď

3pr ´ 1qqe
2n

`
pr ´ 1qσ

2n
ď

4rσ

2n
.

5.2 Proof of Authenticity

We will give A direct access to an oracle rP
p¨,36,¨q

p¨q. So A can now compute

Z “ rP
pN,36,iq

pXq for any pN, i,Xq of its choice. This only increases the advantage
of A. We observe that for an encryption query pNi, Ai,Miq, A can compute Ci

from Ti and the oracle rP
p¨,36,¨q

p¨q, and that for a decryption query pN 1, A1, C 1, T 1q,

A can compute M 1 from T 1, C 1, and the oracle rP
p¨,36,¨q

p¨q. With this observation,
we modify the game as follows:

– For an encryption query pNi, Ai,Miq, A only receives Ti.

– Instead of making a decryption query pN 1, A1, C 1, T 1q, A makes a (single)
verification query of the form pN 1, A1,M 1, T 1q.

With this modification, we can focus on the analysis of the MAC part of
Romulus‹-M, denoted Romulus‹mac-M.

Given a pr, qe, qd, σ, tq-adversary A against the authenticity of Romulus‹mac-M,
we can slightly modify it to obtain a pr, qe, qd, σ, tq-adversary B distinguishing
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the real world pRomulus‹mac-M.EncrP,Romulus‹mac-M.DecrPq and the ideal world
pRand,Rejq such that

Advauth
Romulus‹mac-M

pAq

ď

ˇ

ˇ

ˇ
Pr

”

BRomulus‹mac-M.EncrP,Romulus‹mac-M.Dec
rP ñ 1

ı

´ Pr
“

BRand,Rej ñ 1
‰

ˇ

ˇ

ˇ
,

where Rand returns an independent random n-bit string on any (distinct) in-
put pN,Mq and Rej returns K for the (single) decryption query. In order to
upper bound B’s distinguishing advantage, we can use Patarin’s coefficient-H
technique [Pat08]. At the end of the game, B will have sets of query-response
pairs

#

τe “ ppN1, A1,M1, T1q, . . . , pNqe , Aqe ,Mqe , Tqeqq,

τv “ ppN
1
1, A

1
1,M

1
1, T

1
1, b

1
1q, . . . , pN

1
qd
, A1qd ,M

1
qd
, T 1qd , b

1
qd
qq

where b1j P tJ,Ku, and it holds that b1j “ K in the ideal world. In the real world,

B is given additional information rP
p¨,40,¨q

p¨q and rP
p¨,44,¨q

p¨q for free at the end of
the game. In the ideal world, B is given two independent and uniform tweakable

permutations rP
p¨,40,¨q

p¨q and rP
p¨,44,¨q

p¨q, which are independent of Rand and Rej.
Overall, B obtains a transcript

τ “

ˆ

τe, τv, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨q

˙

.

A transcript τ is called attainable if the probability to obtain the transcript
in the ideal world is non-zero, and let Θ be the set of all attainable transcripts.
We let Θideal and Θreal denote the probability distributions of the transcript in
the ideal world and in the real world, respectively. Based on these notations, we
will use Lemma 2.

Since rP
p¨,40,¨q

p¨q and rP
p¨,44,¨q

p¨q are made public, one can determine the input

to rP
pNi,wi,ai`miq

(resp. rP
pN 1j ,w

1
j ,a

1
j`m

1
jq

), denoted Xi (resp. X 1j), where ai (resp.
a1j) denotes the number of AD blocks for the i-th encryption query (resp. the
j-th decryption query) and mi (resp. m1j) denotes the number of message blocks
for the i-th encryption query (resp. the j-th decryption query). Then a transcript

τ “ pτe, τv, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨qq is defined to be bad if

pXi, Ni, wi, ai `miq “ pX
1
j , N

1
j , w

1
j , a

1
j `m

1
jq

for some i P t1, . . . , qeu and j P t1, . . . , qdu, or

pXi, Ni, wi, ai `miq “ pXj , Nj , wj , aj `mjq

for some i and j such that 1 ď i ă j ď qe. Otherwise τ is called good. We first
show that, in the ideal world, the probability of obtaining a bad transcript is
small.
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Lemma 12. PrrΘideal P BadTs ď
2rqe
2n

`
2rqd
2n

.

Proof. With a similar argument to the proof of Lemma 7, the probability that
pXi, Ni, wi, ai ` miq “ pX 1j , N

1
j , w

1
j , a

1
j ` m1jq for some i P t1, . . . , qeu and j P

t1, . . . , qdu is upper bounded by
2rqd
2n

.

On the other hand, with the same argument as the proof of Lemma 8, the
probability that pXi, Ni, wi, ai `miq “ pXj , Nj , wj , aj `mjq for some i and j
such that 1 ď i ă j ď qe is upper bounded by

2pr ´ 1qqe
2n

,

which completes the proof. [\

We next show that the ratio of the interpolation probabilities is close to one.

Lemma 13.
PrrΘreal “ τ s

PrrΘideal “ τ s
ě 1´

2qd
2n

.

Proof. We fix a good transcript τ “ pτe, τv, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨qq. An important

observation is that the probabilities of obtaining pτe, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨qq are the

same in the ideal and the real worlds; every tweak of rP used to generate a tag Ti is
fresh, and the tweakable permutation can be evaluated by lazy sampling. In this
way, all the tags will be chosen independently at random. Now we will upper bound

the probability that b1 “ J in the real world given pτe, rP
p¨,40,¨q

p¨q, rP
p¨,44,¨q

p¨qq.

Since τ is good, we have

pXi, Ni, wi, ai `miq ‰ pXj , Nj , wj , aj `mjq

for all i P t1, . . . , qeu and j P t1, . . . , qdu. For each j P t1, . . . , qdu, there are at
most r indices i P t1, . . . , qeu such that Ni “ Nj . So the probability that

rP
pNj ,wj ,aj`mjq

pXjq “ Tj

is upper bounded by 1
2n´r ď

2
2n (if r ď 2n´1). Therefore, the probability that

bj “ K for some j P t1, . . . , qdu in the real world is lower bounded by 1 ´ 2qd
2n ,

which completes the proof. [\

By Lemma 2, 12 and 13, we have

Advauth
Romulus‹-Mpr, qe, qd, σe, σd, tq “ Advauth

Romulus‹mac-M
pAq ď 2rqe

2n
`

4rqd
2n

when r ď 2n´1.
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5.3 Summary

Any pr, qe, σe, tq-adversary A against the privacy of Romulus-M can be viewed as
an adversary against Romulus‹-M such that

Adv
priv
Romulus-MpAq ď Adv

priv
Romulus‹-MpAq `Adv

tprp

rE
pqe, t`Opσeqq.

Similarly, any pr, qe, qd, σe, σd, tq-adversary A against the authenticity of Romulus-M
can be viewed as an adversary against Romulus‹-M such that

Advauth
Romulus-MpAq ď Advauth

Romulus‹-MpAq `Advtprp

rE
pqe ` qd, t`Opσeq `Opσdqq.

With this observation, we obtain the following theorem.

Theorem 3. If 1 ď r ď 2n´1, then we have

Adv
priv
Romulus-Mpr, qe, σe, tq ď Adv

tprp

rE
pqe, t`Opσeqq `

4rσe
2n

,

Advauth
Romulus-Mpr, qe, qd, σe, σd, tq ď Advtprp

rE
pqe ` qd, t`Opσeq `Opσdqq

`
2rqe ` 4rqd

2n
.
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